Journal of Scientific Computing

, Volume 75, Issue 1, pp 253–275 | Cite as

Compact Direct Flux Reconstruction for Conservation Laws

  • Lai Wang
  • Meilin YuEmail author


In this study, a high-order discontinuous compact direct flux reconstruction (CDFR) method is developed to solve conservation laws numerically on unstructured meshes. Without explicitly constructing any polynomials, the CDFR method directly calculates the nodal flux derivatives via the compact finite difference approach within elements. To achieve an efficient implementation, the construction procedure of flux derivatives is conducted in a standard element. As a result, a standard flux-derivative-construction matrix can be formulated. The nodal flux derivatives can be directly constructed through the multiplication of this matrix and the flux vectors. It is observed that the CDFR method is identical with the direct flux reconstruction method and the nodal flux reconstruction–discontinuous Galerkin method if Gauss–Legendre points are selected as solution points for degrees p up to 8 tested. A von Neumann analysis is then performed on the CDFR method to demonstrate its linear stability as well as dissipation and dispersion properties for linear wave propagation. Finally, numerical tests are conducted to verify the performance of the CDFR method on solving both steady and unsteady inviscid flows, including those over curved boundaries.


Flux reconstruction Compact finite difference High-order method Direct flux derivative construction Von Neumann analysis Curved boundaries 



The authors gratefully acknowledge the support of the Office of Naval Research through the Award N00014-16-1-2735, and the faculty startup support from the department of mechanical engineering at University of Maryland, Baltimore County (UMBC).


  1. 1.
    Ekaterinaris, J.A.: High-order accurate, low numerical diffusion methods for aerodynamics. Prog. Aerosp. Sci. 41, 192–300 (1998)CrossRefGoogle Scholar
  2. 2.
    Wang, Z.J.: High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43, 1–41 (2007)CrossRefGoogle Scholar
  3. 3.
    Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.-O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. Int. J. Numer. Meth. Fluids 72, 811–845 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: The 18th AIAA Computational Fluid Dynamics Conference, (Miami, FL), AIAA-2007-4079 (2007)Google Scholar
  13. 13.
    Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin methods for diffusion. In: The 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace, (Orlando, FL). AIAA-2009-403 (2007)Google Scholar
  14. 14.
    Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47, 50–72 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ghosh, D., Baeder, J.: Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws. SIAM J. Sci. Comput. 34, A1678–A1706 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S.: The stability of numerical boundary treatments for compact high-order finite-difference schemes. J. Comput. Phys. 108, 272–295 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gustaffson, B.: The convergence rate for difference approximations to general mixed initial-boundary value problems. SIAM J. Numer. Anal. 18, 179–181 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Svard, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 621–645 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 231, 353–375 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129, 74–86 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ranocha, H., Offner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 331, 299–328 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Romero, J., Asthana, K., Jameson, A.: A simplified formulation of the flux reconstruction method. J. Sci. Comput. 67, 351–372 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Romero, J., Jameson, A.: Extension of the flux reconstruction method to triangular elements using collapsed-edge quadrilaterals. In: The 54th AIAA Aerospace Sciences Meeting, (San Diego, CA). AIAA-2016-1825 (2016)Google Scholar
  28. 28.
    van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: The 17th AIAA Computational Fluid Dynamics Conference, (Toronto, Ontario, Canada). AIAA-2005-5108, (2005)Google Scholar
  29. 29.
    Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A., Dinh, N.: A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 229, 6961–6978 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Xu, Z.L., Liu, Y.J., Du, H.J., Lin, G., Shu, C.-W.: Point-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws. J. Comput. Phys. 230, 6843–6865 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, L.P., Liu, W., He, L.X., Deng, X.G., Zhang, H.X.: A class of hybrid DG/FV methods for conservation laws I: basic formulation and one-dimensional systems. J. Comput. Phys. 231, 1081–1103 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45, 348–358 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vincent, P.E., Castonguay, P., Jameson, A.: Insights from von Neumann analysis of high-order flux reconstruction schemes. J. Comput. Phys. 230, 8134–8154 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    den Abeele, K.V.: Development of High-order Accurate Schemes for Unstructured Grids. Ph.D. Thesis, Vrije Universiteit Brussel (2009)Google Scholar
  36. 36.
    Asthana, K., Jameson, A.: High-order flux reconstruction schemes with minimal dispersion and dissipation. J. Sci. Comput. 62, 913–944 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yu, M.L., Wang, Z.J.: Homotopy continuation for correction procedure via reconstruction–discontinuous Galerkin (CPR-DG) methods. In: the 53rd AIAA Aerospace Sciences Meeting, (Kissimmee, FL). AIAA-2015-0570 (2015)Google Scholar
  39. 39.
    Yu, M.L., Wang, Z.J., Liu, Y.: On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods. J. Comput. Phys. 259, 70–95 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    The 1st International Workshop on High-Order CFD Methods. In: The 50th AIAA Aerospace Sciences Meeting, (Nashville, TN) (2012).

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.University of MarylandBaltimore County, BaltimoreUSA

Personalised recommendations