Abstract
In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the \(L^2\)-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree \(k\ge 0\) at mesh elements and faces are used, both quantities are proved to converge as \(h^{k+1}\) (with h denoting the meshsize).
Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces. In: Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)
Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015). doi:10.1515/cmam-2015-0004
Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Comput. Fluids 61, 77–85 (2012). doi:10.1016/j.compfluid.2011.11.002
Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006). doi:10.1016/j.jcp.2006.03.006
Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comput. Fluids 36(10), 1529–1546 (2007). doi:10.1016/j.compfluid.2007.03.012
Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. (M2AN) 51(2), 509–535 (2017)
Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes (2017). Submitted. Preprint arXiv:1703.00437
Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016). doi:10.1137/15M1025505
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). doi:10.1007/978-0-387-75934-0
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)
Çeşmelioğlu, A., Cockburn, B., Qiu, W.: Analysis of an HDG method for the incompressible Navier-Stokes equations. Math. Comput. (2016). doi:10.1090/mcom/3195
Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31(3), 723–760 (2015). doi:10.1002/num.21913
Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. (M2AN) 50(3), 635–650 (2016). doi:10.1051/m2an/2015051
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). doi:10.1137/070706616
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005). doi:10.1090/S0025-5718-04-01718-1
Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). doi:10.1090/mcom/3180
Di Pietro, D.A., Droniou, J.: \(W^{s, p}\)-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems. Math. Models Methods Appl. Sci. 27(5), 879–908 (2017). doi:10.1142/S0218202517500191
Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010). doi:10.1090/S0025-5718-10-02333-1
Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques & Applications, vol. 69. Springer, Berlin (2012)
Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015). doi:10.1016/j.cma.2014.09.009
Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). doi:10.1515/cmam-2014-0018
Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016). doi:10.1016/j.cma.2016.03.033
Di Pietro, D.A., Krell, S.: Benchmark session: the 2D hybrid high order method. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex Applications, vol. VIII, pp. 91–106. Springer (2017)
Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015). doi:10.1090/S0025-5718-2014-02861-5
Di Pietro, D.A., Tittarelli, R.: Numerical methods for PDEs. Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré. chapter An introduction to Hybrid High-Order methods. SEMA SIMAI series. Springer (2017). Preprint arXiv:1703.05136
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)
Egger, H., Waluga, C.: hp analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33(2), 687–721 (2013). doi:10.1093/imanum/drs018
Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, pp. 713–1020. North-Holland, Amsterdam (2000)
Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)
Eymard, R., Herbin, R., Latché, J.C.: Convergence analysis of a collocated finite volume scheme for the incompressible Navier–Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45(1), 1–36 (2007)
Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)
Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5 Springer, Berlin (1986)
Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74(249), 53–84 (2005). doi:10.1090/S0025-5718-04-01652-7
Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Hérard, J.M. (eds.) Finite Volumes for Complex Applications, pp. 659–692. Wiley, Hoboken (2008)
Karakashian, O., Katsaounis, T.: A discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Discontinuous Galerkin Methods (Newport, RI, 1999), Lecturer Notes in Computer Science Engineering, vol. 11, pp. 157–166. Springer, Berlin (2000). doi:10.1007/978-3-642-59721-3_11
Kovasznay, L.S.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)
Lehrenfeld, C.: Hybrid discontinuous galerkin methods for solving incompressible flow problems. Ph.D. Thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen (2010)
Liu, C., Walkington, N.J.: Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45(3), 1287–1304 (2007)
Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)
Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)
Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)
Rivière, B., Sardar, S.: Penalty-free discontinuous Galerkin methods for incompressible Navier–Stokes equations. Math. Models Methods Appl. Sci. 24(6), 1217–1236 (2014). doi:10.1142/S0218202513500826
Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014). doi:10.1016/j.amc.2014.09.089
Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). doi:10.1016/j.jcp.2015.11.028
Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42, 155–174 (2016)
Acknowledgements
The work of D. A. Di Pietro was supported by Agence Nationale de la Recherche project HHOMM (ANR-15-CE40-0005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Di Pietro, D.A., Krell, S. A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem. J Sci Comput 74, 1677–1705 (2018). https://doi.org/10.1007/s10915-017-0512-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0512-x