Skip to main content
Log in

A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we introduce and analyze a novel Hybrid High-Order method for the steady incompressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possibility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under general assumptions the existence of a discrete solution, which is also unique provided a data smallness condition is verified. Using a compactness argument, we prove convergence of the sequence of discrete solutions to minimal regularity exact solutions for general data. For more regular solutions, we prove optimal convergence rates for the energy-norm of the velocity and the \(L^2\)-norm of the pressure under a standard data smallness assumption. More precisely, when polynomials of degree \(k\ge 0\) at mesh elements and faces are used, both quantities are proved to converge as \(h^{k+1}\) (with h denoting the meshsize).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. In: Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

  2. Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015). doi:10.1515/cmam-2015-0004

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier–Stokes equations. Comput. Fluids 61, 77–85 (2012). doi:10.1016/j.compfluid.2011.11.002

    Article  MathSciNet  MATH  Google Scholar 

  4. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006). doi:10.1016/j.jcp.2006.03.006

    Article  MathSciNet  MATH  Google Scholar 

  5. Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An implicit high-order discontinuous Galerkin method for steady and unsteady incompressible flows. Comput. Fluids 36(10), 1529–1546 (2007). doi:10.1016/j.compfluid.2007.03.012

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. (M2AN) 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes (2017). Submitted. Preprint arXiv:1703.00437

  8. Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016). doi:10.1137/15M1025505

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). doi:10.1007/978-0-387-75934-0

  11. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Çeşmelioğlu, A., Cockburn, B., Qiu, W.: Analysis of an HDG method for the incompressible Navier-Stokes equations. Math. Comput. (2016). doi:10.1090/mcom/3195

    MATH  Google Scholar 

  13. Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31(3), 723–760 (2015). doi:10.1002/num.21913

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. (M2AN) 50(3), 635–650 (2016). doi:10.1051/m2an/2015051

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). doi:10.1137/070706616

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005). doi:10.1090/S0025-5718-04-01718-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  18. Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). doi:10.1090/mcom/3180

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Pietro, D.A., Droniou, J.: \(W^{s, p}\)-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems. Math. Models Methods Appl. Sci. 27(5), 879–908 (2017). doi:10.1142/S0218202517500191

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79, 1303–1330 (2010). doi:10.1090/S0025-5718-10-02333-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques & Applications, vol. 69. Springer, Berlin (2012)

  22. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015). doi:10.1016/j.cma.2014.09.009

    Article  MathSciNet  Google Scholar 

  23. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). doi:10.1515/cmam-2014-0018

    Article  MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016). doi:10.1016/j.cma.2016.03.033

    Article  MathSciNet  Google Scholar 

  25. Di Pietro, D.A., Krell, S.: Benchmark session: the 2D hybrid high order method. In: Cancès, C., Omnes, P. (eds.) Finite Volumes for Complex Applications, vol. VIII, pp. 91–106. Springer (2017)

  26. Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015). doi:10.1090/S0025-5718-2014-02861-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Di Pietro, D.A., Tittarelli, R.: Numerical methods for PDEs. Lectures from the fall 2016 thematic quarter at Institut Henri Poincaré. chapter An introduction to Hybrid High-Order methods. SEMA SIMAI series. Springer (2017). Preprint arXiv:1703.05136

  28. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Egger, H., Waluga, C.: hp analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33(2), 687–721 (2013). doi:10.1093/imanum/drs018

    Article  MathSciNet  MATH  Google Scholar 

  30. Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, pp. 713–1020. North-Holland, Amsterdam (2000)

  32. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eymard, R., Herbin, R., Latché, J.C.: Convergence analysis of a collocated finite volume scheme for the incompressible Navier–Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45(1), 1–36 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput. Fluids 98, 196–208 (2014)

    Article  MathSciNet  Google Scholar 

  35. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations. Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5 Springer, Berlin (1986)

  36. Girault, V., Rivière, B., Wheeler, M.F.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comput. 74(249), 53–84 (2005). doi:10.1090/S0025-5718-04-01652-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Hérard, J.M. (eds.) Finite Volumes for Complex Applications, pp. 659–692. Wiley, Hoboken (2008)

    Google Scholar 

  38. Karakashian, O., Katsaounis, T.: A discontinuous Galerkin method for the incompressible Navier–Stokes equations. In: Discontinuous Galerkin Methods (Newport, RI, 1999), Lecturer Notes in Computer Science Engineering, vol. 11, pp. 157–166. Springer, Berlin (2000). doi:10.1007/978-3-642-59721-3_11

  39. Kovasznay, L.S.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lehrenfeld, C.: Hybrid discontinuous galerkin methods for solving incompressible flow problems. Ph.D. Thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen (2010)

  41. Liu, C., Walkington, N.J.: Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45(3), 1287–1304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nguyen, N., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    Article  MathSciNet  Google Scholar 

  45. Rivière, B., Sardar, S.: Penalty-free discontinuous Galerkin methods for incompressible Navier–Stokes equations. Math. Models Methods Appl. Sci. 24(6), 1217–1236 (2014). doi:10.1142/S0218202513500826

    Article  MathSciNet  MATH  Google Scholar 

  46. Tavelli, M., Dumbser, M.: A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier–Stokes equations. Appl. Math. Comput. 248, 70–92 (2014). doi:10.1016/j.amc.2014.09.089

    Article  MathSciNet  MATH  Google Scholar 

  47. Ueckermann, M.P., Lermusiaux, P.F.J.: Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). doi:10.1016/j.jcp.2015.11.028

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, J., Ye, X.: A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math. 42, 155–174 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of D. A. Di Pietro was supported by Agence Nationale de la Recherche project HHOMM (ANR-15-CE40-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Krell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, D.A., Krell, S. A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem. J Sci Comput 74, 1677–1705 (2018). https://doi.org/10.1007/s10915-017-0512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0512-x

Keywords

Mathematics Subject Classification

Navigation