Enriched Spectral Method for Stiff Convection-Dominated Equations

Abstract

A novel and simple numerical method for stiff convection-dominated problems is studied in presence of boundary or interior layers. A version of the spectral Chevyshev-collocation method enriched with the so-called corrector functions is investigated. The corrector functions here are designed to capture the stiffness of the layers (see the Appendix), and the proposed method does not rely on the adaptive grid points. The extensive numerical results demonstrate that the enriched spectral methods are very accurate with low computational cost.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Alexander, N.B., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3):199–259 (1982). FENOMECH ’81, Part I (Stuttgart, 1981)

  2. 2.

    Berger, A., De Han, H., Kellogg, B.: A priori estimates and analysis of a numerical method for a turning point problem. Math. Comput. 42(166), 465–492 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Brezzi, F., Russo, A.: Choosing bubbles for advection–diffusion problems. Math. Models Methods Appl. Sci. 4, 571587 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, New York (1988)

    Google Scholar 

  5. 5.

    Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    DeSanti, A.J.: Nonmonotone interior layer theory for some singularly perturbed quasilinear boundary value problems with turning points. SIAM J. Math. Anal. 18(2), 321–331 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    DeSanti, A.J.: Perturbed quasilinear Dirichlet problems with isolated turning points. Commun. Partial Differ. Equ. 12(2), 223–242 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    de Groen, P.P.N., Hemker, P.W.: Error bounds for exponentially fitted Galerkin methods to stiff boundary value problems. In: Numerical and Asymptotical Methods for Singular Perturbation Problems, pp. 217–249. Academic Press, New York (1979)

  9. 9.

    De Han, H., Huang, Z.: Tailored finite point method for steady-state reaction–diffusion equations. Commun. Math. Sci. 8(4), 887–899 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    De Han, H., Huang, Z.: Tailored finite point method based on exponential bases for convection–diffusion–reaction equation. Math. Comput. 82(281), 213–226 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    De Han, H., Kellogg, B.: The use of enriched subspaces for singular perturbation problems. In: Proceedings of the China-France Symposium on Finite Element Methods (Beijing, 1982), pp. 293–305. Sci. Press Beijing, Beijing (1983)

  12. 12.

    De Han, H., Huang, Z.: The tailored finite point method. Comput. Methods Appl. Math. 14(3), 321–345 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    de Ruijter, W.P.M.: On the Asymptotic Analysis of Large-Scale Ocean Circulation, volume 120 of Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam (1980)

    Google Scholar 

  14. 14.

    Eisen, H., Heinrichs, W.: A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. Anal. 29(1), 107–122 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Gie, G.-M., Jung, C.-Y., Temam, R.: Recent progresses in boundary layer theory. Discrete Contin. Dyn. Syst. 36(5), 2521–2583 (2016)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Graciaa, J.L., O’Riordan, E.: Numerical approximation of solution derivatives in the case of singularly perturbed time dependent reaction-diffusion problems. J. Comput. Appl. Math. 273(1), 13–24 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (1977). CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26

  18. 18.

    Guo, W., Stynes, M.: Pointwise error estimates for a streamline diffusion method on a Shishkin mesh for a convection–diffusion problem. IMA J. Numer. Anal. 17(1), 29–59 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Hong, Y., Jung, C.-Y., Temam, R.: On the numerical approximations of stiff convection–diffusion equations in a circle. Numer. Math. 127(2), 291–313 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hong, Y.: Numerical approximation of the singularly perturbed heat equation in a circle. J. Sci. Comput. 62(1), 1–24 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Il’in, A.M.: A difference scheme for a differential equation with a small parameter affecting the highest derivative (in Russian). Mat. Zametki. 6, 237–248 (1969)

    MathSciNet  Google Scholar 

  22. 22.

    John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations. I. A review. Comput. Methods Appl. Mech. Eng. 196(17–20), 2197–2215 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    John, V., Knobloch, P., Savescu, S.B.: A posteriori optimization of parameters in stabilized methods for convection–diffusion problems—Part I. Comput. Methods Appl. Mech. Eng. 200(41–44), 2916–2929 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Jung, C.-Y., Nguyen, T.B.: Semi-analytical numerical methods for convection-dominated problems with turning points. Int. J. Numer. Anal. Model. 10(2), 314–332 (2013)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Jung, C.-Y., Temam, R.: Asymptotic analysis for singularly perturbed convection–diffusion equations with a turning point. J. Math. Phys. 48(6), 065301 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Jung, C.-Y., Temam, R.: Finite volume approximation of one-dimensional stiff convection–diffusion equations. J. Sci. Comput. 41(3), 384–410 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Jung, C.-Y., Temam, R.: Finite volume approximation of two-dimensional stiff problems. Int. J. Numer. Anal. Model. 7(3), 462–476 (2010)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Jung, C.-Y., Temam, R.: Singularly perturbed problems with a turning point: the non-compatible case. Anal. Appl. (Singap.) 12(3), 293–321 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Jung, J.-H.: A note on the spectral collocation approach of some differential equations with singular source terms. J. Sci. Comput. 39, 49–66 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Kieri, E.: Accelerated convergence for Schrödinger equations with non-smooth potentials. BIT Numer. Math. 54, 729–748 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Kellogg, B., Linss, T., Stynes, M.: A finite difference method on layer-adapted meshes for an elliptic reaction–diffusion system in two dimensions. Math. Comput. 77, 2085–2096 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Kellogg, R.B., Xenophontos, C.: An enriched subspace finite element method for convection–diffusion problems. Int. J. Numer. Anal. Model. 7(3), 477–490 (2010)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Li, Z.-C., Hu, H.-Y., Hsu, C.-H., Wang, S.: Particular solutions of singularly perturbed partial differential equations with constant coefficients in rectangular domains. I. Convergence analysis. J. Comput. Appl. Math. 166, 181–208 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Lynch, R.E., Rice, J.R.: A high order difference method for differential equations. Math. Comput. 34, 333–372 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Liu, W.B., Shen, J.: A new efficient spectral Galerkin method for singular perturbation problems. J. Sci. Comput. 11(4), 411–437 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Liu, W., Tang, T.: Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems. Appl. Numer. Math. 38(3), 315–345 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific Publishing Co., Inc., River Edge (1996)

    Google Scholar 

  38. 38.

    Roos, H.-G.: Ten ways to generate the Il’in and related schemes. J. Comput. Appl. Math. 53, 43–59 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, volume 24 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2008). Convection–diffusion–reaction and flow problems

  40. 40.

    Simonnet, E., Dijkstra, H.A.: Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation. J. Phys. Oceanogr. 32, 1747–1762 (2002)

    Article  Google Scholar 

  41. 41.

    Smith, D.R.: Singular-Perturbation Theory. Cambridge University Press, Cambridge (1985). An introduction with applications

  42. 42.

    Shen, J., Tang, T., Wang, L.-L.: Spectral Methods, Volume 41 of Springer Series in Computational Mathematics. Springer, Heidelberg (2011). Algorithms, analysis and applications

  43. 43.

    Shen, J., Wang, Y.: Müntz–Galerkin methods and applications to mixed Dirichlet–Neumann boundary value problems. SIAM J. Sci. Comput. 38(4), A2357 (2016)

    Article  MATH  Google Scholar 

  44. 44.

    Shih, S.-D., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18(5), 1467–1511 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  45. 45.

    Trefethen, L.N.: Spectral Methods in MATLAB, Volume 10 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Google Scholar 

  46. 46.

    Tang, T., Trummer, M.R.: Boundary layer resolving pseudospectral methods for singular perturbation problems. SIAM J. Sci. Comput. 17(2), 430–438 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Tee, T.W., Trefethen, L.N.: A rational spectral collocation method with adaptively transformed Chebyshev grid points. SIAM J. Sci. Comput. 28(5), 1798–1811 (2006). (electronic)

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Wang, Y., Chen, S., Wu, X.: A rational spectral collocation method for solving a class of parameterized singular perturbation problems. J. Comput. Appl. Math. 233(10), 2652–2660 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Zrahia, U., Orszag, S.A., Israeli, M.: Hybrid spectral element/asymptotic method for boundary layers problems. J. Comput. Phys. 138(2), 858–880 (1997)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. After this paper was completed, we learned during an AMS Sectional meeting in Bloomington, Indiana, of the work of [43]. The authors resolved the singularities of the mixed Dirichlet–Neumann boundary value problems using a version of enriched spectral methods. However, the way of enrichment is not similar since different types of singularities are considered here. Chang-Yeol Jung was supported by the National Research Foundation of Korea grant funded by the Ministry of Education (2015R1D1A1A01059837).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Yeol Jung.

Appendix A: Elements of the Singular Perturbation Analysis

Appendix A: Elements of the Singular Perturbation Analysis

To treat the boundary and interior layers in a numerical method, we devise a corrector function to capture the sharpness of the layers. The behaviours of the layers much depend on the regularity of the limit solutions \(u^0\). More precisely, the discrepancies of the limit solutions \(u^0\) at the boundaries or at the interior point respectively produce the boundary and interior layers. To capture their sharpness, zooming near the layers with certain stretched variables we identify leading order differential operators which determine a corrector function. For more details on the singular perturbation analysis, see e.g. [6, 7, 25, 28, 41, 44].

Example for the Boundary Layer

In the following convection–diffusion equations with constant coefficients

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon \partial _x^2 u^\varepsilon - \partial _x u^\varepsilon = f, \quad x \in (-1,1),\\ u^\varepsilon (-1) = u^\varepsilon (1) = 0, \end{array}\right. } \end{aligned}$$
(A.1)

the formal limit problem, i.e., when \(\varepsilon =0\), is

$$\begin{aligned} {\left\{ \begin{array}{ll} -\partial _x u^0 = f,\\ u^0(1) = 0. \end{array}\right. } \end{aligned}$$
(A.2)

A boundary condition is assigned at the inflow \(x=1\). Observing that \(u^\varepsilon - u^0 \ne 0\) at \(x=-1\) and 0 at \(x=1\), we find that the discrepancy at the outflow \(x=-1\) leads to a sharp transition there. Introducing the stretching variable \(\bar{x}\) with \(x = \varepsilon \bar{x} - 1\), we identify the leading differential operators

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \partial ^2_{\bar{x}} \theta - \partial _{\bar{x}} \theta = 0,\\ \theta = -u(-1), &{}\text {at}\; \bar{x}=0,\\ \theta \rightarrow 0&{} \text {as}\; \bar{x} \rightarrow \infty . \end{array}\right. \end{aligned}$$
(A.3)

The solution of (A.3) can be written explicitly,

$$\begin{aligned} \theta = -u^0(-1) \exp (-\bar{x}), \end{aligned}$$
(A.4)

and we expect \(u^\varepsilon \approx u^0 + \theta \). The rigorous analysis like a convergence analysis can be found in the references introduced in this “Appendix”. The function \(e^{-\frac{x+1}{\varepsilon }}\) represents the stiffness part of the boundary layer and it is defined as a corrector.

Example for the Interior Layer

For convection–diffusion equations which contain a turning point, we consider

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon \partial ^2_x u^\varepsilon - b(x) \partial _x u^\varepsilon = f, \quad x \in (-1,1),\\ u^\varepsilon (-1) = u^\varepsilon (1) = 0, \end{array}\right. } \end{aligned}$$
(A.5)

where

$$\begin{aligned} b< 0 \text { for } x<0, \quad b(0) = 0, \quad b> 0 \text { for } x>0, \end{aligned}$$
(A.6)

and \(b'(x)> 0\). The interior layer arises at a turning point \(x=0\) where the sign of b(x) changes and the characteristics collide.

For the formal limit problem, we set \(\varepsilon =0\) in the above equation. Since \(b(0)=0\), \(\partial _x u^0\) may not be defined at \(x=0\) and we thus consider the left and right parts (\(u^0_l,u^0_r\), respectively) of \(u^0\) from \(x=0\),

$$\begin{aligned} -b(x) \partial _x u^0_l = f \quad \text { for } x < 0 \quad \text { and }\quad -b(x) \partial _x u^0_r = f \quad \text { for } x > 0. \end{aligned}$$
(A.7)

The inflow boundary conditions are then supplemented,

$$\begin{aligned} u^0_l(-1) = 0,\qquad u^0_r(1) = 0. \end{aligned}$$
(A.8)

The discrepancy at \(x=0\) between \(u^0_l\) and \(u^0_r\) produce an interior layer. If \(f(0) = 0\), the discrepancy is finite and thus the correctors introduced below can well capture the sharpness of interior layers. However, if \(f(0) \ne 0\), the limit problem

$$\begin{aligned} -b(x) \partial _x u^0 = f \end{aligned}$$
(A.9)

has an inconsistency at \(x=0\) since \(b(0) = 0\). This implies that \(\partial _x u^0\) blows up near \(x=0\) where the interior layers cannot be captured by corrector functions. To remedy this difficulty, one can lift \(u^\varepsilon \) so that the given data can be compatible (see (2.33)). For the singular perturbation analysis of the non-compatible case, see e.g. [28].

Using \(\bar{x} = x/\sqrt{\varepsilon }\) and \(b(x) = b'(0)x + \frac{1}{2}b^{''}(\xi )x^2 = b^{'}(0)\bar{x}\sqrt{\varepsilon } + \mathcal {O}(\varepsilon )\), some \(\xi \) with \(|\xi |\le |x|\), we substitute into (A.5) with \(f=0\) and obtain the leading differential operators,

$$\begin{aligned} -\partial ^2_{\bar{x}} \theta - b^{'}(0) \bar{x} \partial _{\bar{x}} \theta = 0, \end{aligned}$$
(A.10)

supplemented with the boundary conditions,

$$\begin{aligned} \theta \rightarrow \text {constants}\ \text {as } \bar{x} \rightarrow \pm \infty . \end{aligned}$$
(A.11)

The constants are accurately approximated by the standard spectral methods. A particular solution of (A.10) can be written explicitly,

$$\begin{aligned} \theta = \frac{2}{\sqrt{\pi }} \int ^{\bar{x} \sqrt{\frac{b^{'}(0)}{2}}}_{0} e^{-\tau ^2} d \tau = erf \left( \bar{x} \sqrt{\frac{b^{'}(0)}{2}} \right) , \end{aligned}$$
(A.12)

which serves as a corrector.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Jung, CY. Enriched Spectral Method for Stiff Convection-Dominated Equations. J Sci Comput 74, 1325–1346 (2018). https://doi.org/10.1007/s10915-017-0494-8

Download citation

Keywords

  • Spectral methods
  • Enriched methods
  • Boundary layers
  • Convection–diffusion equations
  • Collocation methods