Skip to main content
Log in

Evaluation of Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents the formulation of a dual time stepping procedure to solve the equations of fully implicit Runge–Kutta schemes. In particular the method is applied to Gauss and Radau 2A schemes with either two or three stages. The schemes are tested for unsteady flows over a pitching airfoil modeled by both the Euler and the unsteady Reynolds averaged Navier Stokes equations. It is concluded that the Radau 2A schemes are more robust and less computationally expensive because they require a much smaller number of inner iterations. Moreover these schemes seem to be competitive with alternative implicit schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jameson, A.: Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings, AIAA Paper 91-1596, 10th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii (June 1991)

  2. Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  3. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley-Interscience, Chichester (1987)

    MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  5. Butcher, J.C.: Implicit Runge–Kutta processes. Math. Comput. 18(85), 50–64 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  6. Persson, P.-O., Willis, D.J., Peraire, J.: The numerical simulation of flapping wings at low Reynolds numbers. AIAA Paper 2010-724, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL (2010)

  7. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)

    Article  MATH  Google Scholar 

  8. Jothiprasad, G., Mavriplis, D.J., Caughey, D.A.: Higher-order time integration schemes for the unsteady Navier–Stokes equations on unstructured meshes. J. Comput. Phys. 191, 542–566 (2003)

    Article  MATH  Google Scholar 

  9. Boom, P.D., Zingg, D.W.: High-order implicit time integration for unsteady compressible fluid flow simulation. AIAA Paper 2013-2831, 21st AIAA Computational Fluid Dynamics Conference, San Diego, CA (2013)

  10. Butcher, J.: Integration processes based on Radau quadrature formulas. Math. Comput. 18(86), 233–244 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jameson, A.: Application of dual time stepping to fully implicit Runge Kutta Schemes for unsteady flow calculations. AIAA paper 2015-2753, 22nd AIAA Computational Fluid Dynamics Conference (2015)

  12. Mulder, W.A.: A new multigrid approach to convection problems. J. Comput. Phys. 83, 303–323 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mulder, W.A.: A high-resolution Euler solver based on multigrid, semi-coarsening, and defect correction. J. Comput. Phys. 100, 91–104 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Allmaras, S.: Analysis of a local matrix preconditioner for the 2-D Navier–Stokes equations. AIAA paper 93-3330, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL (July 1993)

  15. Allmaras, S.: Analysis of semi-implicit preconditioners for multigrid solution of the 2-D Navier–Stokes equations. AIAA paper 95-1651, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA (June 1995)

  16. Allmaras, S.: Algebraic smoothing analysis of multigrid methods for the 2-D compressible Navier–Stokes equations. AIAA Paper 97-1954, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997)

  17. Pierce, N.A., Giles, M.B.: Preconditioning compressible flow calculations on stretched meshes. J. Comput. Phys. 136, 425–445 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pierce, N.A., Giles, M.B., Jameson, A., Martinelli, L.: Accelerating three-dimensional Navier–Stokes calculations. AIAA Paper 97-1953, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO (July 1997)

  19. Rossow, C.-C.: Efficient computation of compressible and incompressible flows. J. Comput. Phys. 220(2), 879–899 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Swanson, R., Turkel, E., Rossow, C.-C.: Convergence acceleration of Runge–Kutta schemes for solving the Navier–Stokes equations. J. Comput. Phys. 224(1), 365–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jameson, A.: Solution of the Euler equations by a multigrid method. Appl. Math. Comput. 13, 327–356 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jameson, A.: Origins and further development of the Jameson–Schmidt–Turkel scheme. AIAA J. 55(5), 1487–1510. doi:10.2514/1.J055493

  23. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 1981-1259, 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA (June 1981)

  24. Davis, S.S.: NACA 64A010 oscillatory pitching, compendium of unsteady aerodynamics measurements. Tech. Rep. 702, AGARD (1982)

  25. Pazner, W., Persson, P.-O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)

    Article  MathSciNet  Google Scholar 

  26. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

In recent years the author’s research has benefited greatly from the continuing support of the AFOSR Computational Mathematics Program through grant number FA9550-14-1-0186, under the direction of Dr. Fariba Fahroo and Dr. Jean-Luc Cambier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Jameson.

Additional information

Dedicated to Chi-Wang Shu on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jameson, A. Evaluation of Fully Implicit Runge Kutta Schemes for Unsteady Flow Calculations. J Sci Comput 73, 819–852 (2017). https://doi.org/10.1007/s10915-017-0476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0476-x

Keywords

Navigation