Skip to main content
Log in

A High-Resolution Finite Volume Seismic Model to Generate Seafloor Deformation for Tsunami Modeling

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A high-resolution finite volume method approach to incorporating time-dependent slip across rectangular subfaults when modeling general fault geometry is presented. The fault slip is induced by a modification of the Riemann problem to the linear elasticity equations across cell interfaces aligned with the subfaults. This is illustrated in the context of the high-resolution wave-propagation algorithms that are implemented in the open source Clawpack software (www.clawpack.org), but this approach could be easily incorporated into other Riemann solver based numerical methods. Surface deformation results are obtained in both two and three dimensions and compared to those given by the steady-state, homogeneous half-space Okada solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See www.clawpack.org/okada.html.

References

  1. Berger, M.J., George, D.L., LeVeque, R.J., Mandli, K.T.: The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water Res. 34, 1195–1206 (2011)

    Article  Google Scholar 

  2. Clawpack Development Team: Clawpack Software. Version 5.3.1 (2014). doi:10.5281/zenodo.50982

  3. Dutykh, D., Dias, F.: Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Math. Comput. Simul. 80(4), 837–848 (2009). doi:10.1016/j.matcom.2009.08.036

    Article  MATH  MathSciNet  Google Scholar 

  4. Dutykh, D., Mitsotakis, D., Gardeil, X., Dias, F.: On the use of the finite fault solution for tsunami generation problems. Theor. Comput. Fluid Dyn. 27(1–2), 177–199 (2013). doi:10.1007/s00162-011-0252-8

    Article  Google Scholar 

  5. Hartzell, S., Liu, P., Mendoza, C.: The 1994 Northridge, California, earthquake: Investigation of rupture velocity, risetime, and high-frequency radiation. J. Geophys. Res. Solid Earth 101(B9), 20091–20108 (1996). doi:10.1029/96JB01883

    Article  Google Scholar 

  6. Ji, C., Wald, D.J., Helmberger, D.V.: Source description of the 1999 Hector Mine, California, earthquake, part I: wavelet domain inversion theory and resolution analysis. Bull. Seismol. Soc. Am. 92(4), 1192–1207 (2002). doi:10.1785/0120000916

    Article  Google Scholar 

  7. Kozdon, J.E., Dunham, E.M.: Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks. Earth. Planet. Sci. Lett. 396, 56–65 (2014). doi:10.1016/j.epsl.2014.04.001

    Article  Google Scholar 

  8. Lemoine, G.I.: Three-dimensional mapped-grid finite volume modeling of poroelastic-fluid wave propagation. SIAM J. Sci. Comput. 38, B808–836 (2016). doi:10.1137/130934866

    Article  MATH  MathSciNet  Google Scholar 

  9. Lemoine, G.I., Ou, M.Y.: Finite volume modeling of poroelastic-fluid wave propagation with mapped grids. SIAM J. Sci. Comput. 36, B396–B426 (2014). doi:10.1137/130920824

    Article  MATH  MathSciNet  Google Scholar 

  10. Lemoine, G.I., Ou, M.Y., LeVeque, R.J.: High-resolution finite volume modeling of wave propagation in orthotropic poroelastic media. SIAM J. Sci. Comput. 35, B176–B206 (2013). doi:10.1137/120878720

    Article  MATH  MathSciNet  Google Scholar 

  11. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  12. LeVeque, R.J., George, D.L., Berger, M.J.: Tsunami modeling with adaptively refined finite volume methods. Acta Numer. 20, 211–289 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maeda, T., Furumura, T.: FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion. Pure Appl. Geophys. 170, 109–127 (2011). doi:10.1007/s00024-011-0430-z

    Article  Google Scholar 

  14. Maeda, T., Furumura, T., Noguchi, S., Takemura, S., Sakai, S., Shinohara, M., Iwai, K., Lee, S.J.: Seismic- and tsunami-wave propagation of the 2011 off the Pacific Coast of Tohoku earthquake as inferred from the tsunami-coupled finite-difference simulation. Bull. Seismol. Soc. Am. 103, 1456–1472 (2013). doi:10.1785/0120120118

    Article  Google Scholar 

  15. Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016). doi:10.7717/peerj-cs.68

    Article  Google Scholar 

  16. Melgar, D., Bock, Y.: Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J. Geophys. Res. Solid Earth 120(5), 2014JB011832 (2015). doi:10.1002/2014JB011832

  17. Nosov, M.A.: Tsunami waves of seismic origin: the modern state of knowledge. Izv. Atmos. Ocean. Phys. 50(5), 474–484 (2014). doi:10.1134/S0001433814030098

    Article  Google Scholar 

  18. Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985)

    Google Scholar 

  19. Saito, T., Tsushima, H.: Synthesizing ocean bottom pressure records including seismic wave and tsunami contributions: toward realistic tests of monitoring systems. J. Geophys. Res. Solid Earth 121(11), 8175–8195 (2016). doi:10.1002/2016JB013195

    Article  Google Scholar 

  20. Titov, V.V., Gonzalez, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., Venturato, A.J.: Real-time tsunami forecasting: challenges and solutions. Nat. Hazards 35(1), 35–41 (2005). doi:10.1007/s11069-004-2403-3

    Article  Google Scholar 

  21. Vogl, C.J., LeVeque, R.J.: Code Archive (2017). doi:10.5281/zenodo.569351

  22. Wilcock, W.S.D., Schmidt, D.A., Vidale, J.E., et al.: Sustained offshore geophysical monitoring in Cascadia. Whitepaper, The Subduction Zone Observatory Workshop, Boise (2016). http://faculty.washington.edu/rjl/pubs/SZOworkshop2016

Download references

Acknowledgements

The authors are grateful to Grady Lemoine for discussions of this work, in particular those involving the modification of the Riemann problems to incorporate fault slip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Vogl.

Additional information

Supported in part by the Gordon and Betty Moore Foundation and by NSF Grants DMS-1216732, DMS-1304081, and EAR-133141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogl, C.J., LeVeque, R.J. A High-Resolution Finite Volume Seismic Model to Generate Seafloor Deformation for Tsunami Modeling. J Sci Comput 73, 1204–1215 (2017). https://doi.org/10.1007/s10915-017-0459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0459-y

Keywords

Navigation