Skip to main content
Log in

An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an efficient algorithm is presented by the extrapolation technique to improve the accuracy of finite difference schemes for solving the fractional boundary value problems with nonsmooth solution. Two popular finite difference schemes, the weighted shifted Grünwald difference (WSGD) scheme and the fractional centered difference (FCD) scheme, are revisited and stability of the schemes is shown in maximum norm. Based on the analysis of leading singularity of exact solution for the underlying problem, it is demonstrated that, with the use of the proposed algorithm, the improved WSGD and FCD schemes can achieve higher accuracy than the original ones for nonsmooth solution. To further improve the accuracy for solving problems with small fractional order, an extended algorithm dealing with two-term singularities correction is also developed. Several numerical examples are given to validate our theoretical prediction. It is shown that both accuracy and convergence rate of numerical solutions can be significantly improved by using the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Levy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional order governing equation of Levy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Celik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ervin, V. J., Heuer, N., Roop, J. P.: Regularity of the solution to 1-D fractional order diffusion equations, arXiv:1608.00128v1 [math.NA] (2016)

  9. Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Hao, Z., Fan, K., Cao, W., Sun, Z.Z.: A finite difference scheme for semilinear space-fractional diffusion equations with time delay. Appl. Math. Comput. 275, 238–254 (2016)

    MathSciNet  Google Scholar 

  11. Hao, Z., Sun, Z.Z.: A linearized high-order difference scheme for the fractional Ginzburg-Landau equation. Numer. Methods for Partial Differ. Equ. 33(1), 105–124 (2017)

  12. Hao, Z., Sun, Z.Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)

    Article  Google Scholar 

  14. Höfling, F., Franosch, T.: Anomalous transport in the crowded world of biological cells. Rep Prog Phys 76(4), 046602 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems. ESAIM Math. Model. Numer. Anal. 49(5), 1261–1283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jovanovic, B.S., Suli, E.: Analysis of finite difference schemes. Springer, London (2014)

    Book  MATH  Google Scholar 

  18. Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann–Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. doi:10.1007/s10444-016-9476-x

  19. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mclean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  26. Sousa, E.: A second-order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554–1562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tadjeran, C., Meerschaert, M.M., Scheffler, H.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second-order difference approximation for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  31. Wang, H., Du, N.: A super fast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yuste, S.B., Joaquín, Q.-M.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order convergence of nonsmooth solutions to multi-term fractional differential equations, arXiv:1701.00996 (2017)

  35. Zhang, Y., Sun, Z.Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, L., Deng, W.: High-order finite difference methods on non-uniform meshes for space fractional operators. Adv. Comput. Math. 42, 425–468 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that helped us improve our paper. The authors also would like to thank Dr. Sheng Chen for helpful discussion during the Zhaopeng Hao visiting in Purdue University and thank Prof. Zhi-Zhong Sun for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanrong Cao.

Additional information

The research is supported by National Natural Science Foundation of China (No. 11671083). Zhaopeng Hao was also partially supported by the National University Student Innovation Program (No. 1410286047) and China Scholarship Council (No. 201506090065).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Cao, W. An Improved Algorithm Based on Finite Difference Schemes for Fractional Boundary Value Problems with Nonsmooth Solution. J Sci Comput 73, 395–415 (2017). https://doi.org/10.1007/s10915-017-0417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0417-8

Keywords

Mathematics Subject Classification

Navigation