Skip to main content
Log in

Spectral Method for Vorticity-Stream Function Form of Navier–Stokes Equations in an Infinite Channel with Slip Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a spectral method for the vorticity-stream function form of Navier–Stokes equations in an infinite channel with slip boundary conditions by using Laguerre functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. The stability and the spectral accuracy in space of proposed method are proved. Numerical results demonstrate the high efficiency of suggested algorithm, and coincide the analysis very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azaiez, M., Shen, J., Xu, C.-J., Zhuang, Q.-Q.: A Laguerre-Legendre spectral method for the Stokes problem in a semi-infinite channel. SIAM J. Numer. Anal. 47, 271–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, G.A., Jureidini, W.N., Karakashian, O.A.: Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27, 1466–1485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. 5, Techniques of Scientific Computing, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  4. Cai, W., Wu, J., Xin, J.-G.: Divergence-free \({{\cal{H}}}\)(div)-conforming hierarchical bases for Magentohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)

    Article  MathSciNet  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  6. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. J. Comp. Phys. 2, 745–762 (1968)

    MathSciNet  MATH  Google Scholar 

  7. Chorin, A.J.: The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dubois, F.: Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal. 27, 1103–1141 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feistauer, M., Schwab, C.: Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. J. Math. Fluid Mech. 3, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gatica, G.N., Hsiao, G.C.: The coupling of boundary element and finite element methods for a nonlinear exterior boundary value problem. Numer. Math. 61, 171–214 (1992)

    Article  MathSciNet  Google Scholar 

  11. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, Vol. 794, Springer, Berlin (1979)

  12. Gresho, P.M.: On pressure boundary conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 1111–1145 (1987)

    Article  MATH  Google Scholar 

  13. Guermond, J.L., Quartapelle, L.: Uncoupled \(\omega -\psi \) formulation for plate flows in multiply connected domains. Math. Model. Methods Appl. Sci. 7, 731–767 (1997)

    Article  MATH  Google Scholar 

  14. Guo, B.-Y.: A class of difference schemes of two-dimensional viscous fluid flow. Research Report of SUST, 1965, also see Acta Math. Sinica, 17, pp. 242–258 (1974)

  15. Guo, B.-Y.: Spectral method for Navier-Stokes equations. Scintia Sinica 28A, 1139–1153 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Guo, B.-Y.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)

    Google Scholar 

  17. Guo, B.-Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  18. Guo, B.-Y.: Navier-Stokes equations with slip boundary conditions. Math. Methods Appl. Sci. 31, 607–626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, B.-Y., He, L.-P.: Fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35, 146–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.-Y., Jiao, Y.-J.: Spectral method for Navier-Stokes equations with slip boundary conditions. J. Sci. Comp. 58, 249–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B.-Y., Jiao, Y.-J.: Spectral method for Navier-Stokes equations with non-slip boundary conditions by using divergence-free base functions. J. Sci. Comp. 66, 1077–1101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, B.-Y., Ma, H.-P.: Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier-Stokes equations. SIAM J. Numer. Anal. 30, 1066–1083 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, B.-Y., Ma, H.-P.: Composite Legendre-Laguerre approximation in unbounded domains. J. Comp. Math. 19, 101–112 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Guo, B.-Y., Shen, J.: Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer. Math. 86, 635–654 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, B.-Y., Wang, L.-L.: W.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theo. 128, 1–41 (2004)

  26. Guo, B.-Y., Wang, T.-J.: Composite Laguerre-Legendre spectral method for exterior problems. Adv. Comp. Math. 32, 393–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, B.-Y., Xu, C.-L.: Mixed Laguerre-Lagendre pseudospectral method for incompressible fluid flow in an infinite strip. Math. Comp. 73, 95–125 (2003)

    Article  Google Scholar 

  28. Guo, B.-Y., Zhang, X.-Y.: A new generalized Laguerre spectral approximation and its applications. J. Comp. Appl. Math. 181, 342–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, B.-Y., Zhang, X.-Y.: Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions. Appl. Numer. Math. 57, 455–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guzman, J., Neilan, M.: Conforming and divergence free Stokes elements on general triangular meshes. Math. Comp. 83, 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hald, O.H.: Convergence of Fourier methods for Navier-Stokes equations. J. Comp. Phys. 40, 305–317 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiao, Y.-J., Guo, B.-Y.: Spectral method for vorticity-stream function form of Navier-Stokes equations with slip boundary conditions. Math. Methods Appl. Sci. 35, 257–267 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karakashian, O., Katsaounis, T.: Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comp. Math. Appl. 51, 1551–1570 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuo, P.-Y.: (Guo Ben-yu): Numerical methods for incompressible viscous flow. Scintia Sinica 20, 287–304 (1977)

    Google Scholar 

  35. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  36. Ma, H.-P., Guo, B.-Y.: Composite Legendre-Laguerre pseudospectral approximation in unbounded domains. IMA J. Numer. Anal. 21, 587–602 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, T., Wang, S.H.: The geometry of the stream lines of steady states of the Navier-Stokes equations. In: Chen, G.Q., Dibenedetto, E. (eds.) Nonlinear Partial Differential Equations, Contemporary Mathematics, Vol. 238, pp. 193–202. American Mathematical Society, Providence (1999)

  38. Ma, T., Wang, S.H.: Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics, Mathematical Surveys and Monographs, vol. 119. American Mathematical Society, Providence (2005)

  39. Maday, Y., Quarteroni, A.: Spectral and pseudospectral approximation of the Navier-Stokes equations. Cont. Math. 19, 761–780 (1982)

    MATH  Google Scholar 

  40. Mucha, P.B.: On Navier-Stokes equations with slip boundary conditions in an infinite pipe. Acta Appl. Math. 76, 1–15 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Orszag, S., Israeli, M., Deville, M.O.: Boundary conditions for incompressible flows. J. Sci. Comp. 1, 75–111 (1986)

    Article  MATH  Google Scholar 

  42. Téman, R.: Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des fractionnarires II. Arch. Rati. Mech. Anal. 33, 377–385 (1969)

    Google Scholar 

  43. Zhang, S.-Y.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comp. 74, 543–554 (2004)

  44. Zhang, S.-Y.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements of rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhuang, Q.-Q., Shen, J., Xu, C.-J.: A coupled Legendre-Laguerre spectral-element method for the Navier-Stokes equations in unbounded domains. J. Sci. Comput. 42, 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-hong Yu.

Additional information

The work is supported in part by NSF of China Nos. 11601332 and 11571238, and the Hujiang Foundation of China (B14005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Xh., Guo, By. Spectral Method for Vorticity-Stream Function Form of Navier–Stokes Equations in an Infinite Channel with Slip Boundary Conditions. J Sci Comput 73, 283–302 (2017). https://doi.org/10.1007/s10915-017-0413-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0413-z

Keywords

Mathematics Subject Classification

Navigation