Numerical Investigation of a Class of Liouville Control Problems


An accurate and efficient numerical scheme for solving a Liouville optimal control problem in the framework of the Pontryagin’s maximum principle (PMP) is presented. The Liouville equation models the time-evolution of a density function that may represent a distribution of non-interacting particles or a probability density. In this work, the purpose of the control is to maximize the measure of a target set at a given final time. In order to solve this problem, a high-order accurate conservative and positive preserving discretization scheme is investigated and a novel iterative optimization method is formulated that solves the PMP optimality condition without requiring differentiability with repsect to the control variable. Results of numerical experiments are presented that demonstrate the effectiveness of the proposed solution procedure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. Calculus of Variations and Nonlinear Partial Differential Equations Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy June 27–July 2, pp. 6–21, 8369. Springer, Berlin (2005)

  2. 2.

    Ambrosio, L., Crippa, G.: Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields. In: Transport Equations and Multi-D Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, vol 5 (2008)

  3. 3.

    Benamou, J.-D., Brenier, Y.: A numerical method for the optimal time-continuous mass transport problem and related problems. In: Monge Ampère Equation: Applications to Geometry and Optimization (Deerfield Beach, FL), vol. 26 of Contemp. Math., Amer. Math. Soc., Providence, 1999, pp. 1–11 (1997)

  4. 4.

    Benzoni-Gavage, S., Serre, D.: Multi-dimensional hyperbolic partial differential equations. In: First-Order Systems and Applications, Oxford Mathematical Monographs (2007)

  5. 5.

    Bonnans, J.F., Casas, E.: An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33, 274–298 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Borzì, A., Ito, K., Kunisch, K.: Optimal control formulation for determining optical flow. SIAM J. Sci. Comput. 24(3), 818–847 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Brockett, R.W.: Optimal control of the Liouville equation. AMS/IP Stud. Adv. Math. 39, 23–35 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Brockett, R.W.: Notes on the Control of the Liouville Equation. In: Control of Partial Differential Equations, pp 101–129. Springer, Berlin

  9. 9.

    Casas, E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35, 1297–1327 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Cercignani, C.: Mathematical Methods in Kinetic Theory. Springer, Berlin (1969)

    Book  MATH  Google Scholar 

  11. 11.

    Chen, K., Lorenz, D.A.: Image sequence interpolation using optimal control. J. Math. Imaging Vision 41, 222–238 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Cho, H., Venturi, D., Karniadakis, G.E.: Numerical methods for high-dimensional probability density function equations. J. Comput. Phys. 315, 817–837 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Norman, New York (1955)

    MATH  Google Scholar 

  14. 14.

    DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Dmitruk, A.V., Osmolovskii, N.P.: On the proof of Pontryagin’s maximum principle by means of needle variations. Fundamentalnaya i prikladnaya matematika 19, 49–73 (2014)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Hanzon, B., Jibetean, D.: Global minimization of a multivariate polynomial using matrix methods. J. Global Optim. 27, 1–23 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. Elsevier, North-Holland (1979)

    Google Scholar 

  18. 18.

    Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  19. 19.

    Lin, C.-T., Tadmor, E.: \(L^1\) stability and error estimates for approximate Hamilton–Jacobi solutions. Numer. Math. 87, 701–735 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Mazurenko, S.S.: The dynamic programming method in systems with states in the form of distributions. Moscow Univ. Comput. Math. Cybern. 35, 125–133 (2011)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Osher, S., Chakravarthy, S.: SIAM. J. Numer. Anal. 21, 955–984 (1984)

    Article  Google Scholar 

  22. 22.

    Ovsyannikov, D.A.: Matematicheskie Metody Upravleniya Puchkami. Leningrad University, Leningrad (1980)

    Google Scholar 

  23. 23.

    Pesch, H.J., Bechmann, S., Wurst, J.-E.: Bang-bang and singular controls in optimal control problems with partial differential equations. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp 7671–7678 (2012)

  24. 24.

    Pogodaev, N.: Optimal control of continuity equations. Nonlinear Differ. Equ. Appl. 23(2) (2016)

  25. 25.

    Propoĭ, A.I.: Problems of the optimal control of mixed states. Avtomat. I Telemekh. 3, 87–98 (1994)

    MathSciNet  Google Scholar 

  26. 26.

    Raymond, P.J., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39, 143–177 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Roy, S., Annunziato, M., Borzì, A.: A Fokker–Planck feedback control-constrained approach for modelling crowd motion. J. Comput. Theor. Transp. 45(6), 442–458 (2016)

  28. 28.

    Sanders, R.: A third order accurate variation nonexpansive difference scheme for single non-linear conservation law. Math. Comp. 51, 535–558 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Sumin, M.I.: The first variation and Pontryagin’s maximum principle in optimal control for partial differential equations. Zh. Vychisl. Mat. Mat. Fiz. 49, 998–1020 (2009)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Tröltzsch, F.: Optimal Control of Partial Differential Equations. AMS, Providence (2010)

    Book  MATH  Google Scholar 

  31. 31.

    Villani, C.: Topics in Optimal Transportation. AMS, Providence (2003)

    Book  MATH  Google Scholar 

  32. 32.

    Zhang, X., Shu, C.-W.: A genuinely higher order total variation diminishing scheme for one-dimensional scalar conservation laws, SIAM. J. Numer. Anal. 48(2), 772–795 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    MathSciNet  Article  MATH  Google Scholar 

Download references


We would like to thank M. Annunziato, Andrei V. Dmitruk, Andrei V. Fursikov and Fredi Tröltzsch for helpful discussion. This project was supported in part by the BMBF Verbundprojekt 05M2013 ‘ROENOBIO: Robust energy optimization of fermentation processes for the production of biogas and wine’.

Author information



Corresponding author

Correspondence to Souvik Roy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Borzì, A. Numerical Investigation of a Class of Liouville Control Problems. J Sci Comput 73, 178–202 (2017).

Download citation


  • Liouville equation
  • Optimal control theory
  • Pontryagin’s maximum principle
  • Sanders scheme

Mathematics Subject Classification

  • 35Q93
  • 49K20
  • 49J20
  • 65M08