Skip to main content
Log in

A Non-oscillatory Multi-Moment Finite Volume Scheme with Boundary Gradient Switching

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we propose a new formulation for high-order multi-moment constrained finite volume (MCV) method. In the one-dimensional building-block scheme, three local degrees of freedom (DOFs) are equidistantly defined within a grid cell. Two candidate polynomials for spatial reconstruction of third-order are built by adopting one additional constraint condition from the adjacent cells, i.e. the DOF at middle point of left or right neighbour. A boundary gradient switching (BGS) algorithm based on the variation-minimization principle is devised to determine the spatial reconstruction from the two candidates, so as to remove the spurious oscillations around the discontinuities. The resulted non-oscillatory MCV3-BGS scheme is of fourth-order accuracy and completely free of case-dependent ad hoc parameters. The widely used benchmark tests of one- and two-dimensional scalar and Euler hyperbolic conservation laws are solved to verify the performance of the proposed scheme in this paper. The MCV3-BGS scheme is very promising for the practical applications due to its accuracy, non-oscillatory feature and algorithmic simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chen, C.G., Xiao, F.: An adaptive multimoment global model on a cubed sphere. Mon. Weather Rev. 139, 523–548 (2011)

    Article  Google Scholar 

  2. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Book  MATH  Google Scholar 

  6. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  8. Huang, C.S., Xiao, F., Arbogast, T.: Fifth order multi-moment weno schemes for hyperbolic conservation laws. J. Sci. Comput. 64(2), 477–507 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ii, S., Xiao, F.: CIP/multi-moment finite volume method for Euler equations, a semiLagrangian characteristic formulation. J. Comput. Phys. 222, 849–871 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ii, S., Xiao, F.: High order multi-moment constrained finite volume method. Part I: basic formulation. J. Comput. Phys. 228, 3669–3707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X.L., Chen, C.G., Shen, X.S., Xiao, F.: A multi-moment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Weather Rev. 141, 1216–1240 (2013)

    Article  Google Scholar 

  13. Onodera, N., Aoki, T., Yokoi, K.: A fully conservative high-order upwind multi-moment method using moments in both upwind and downwind cells. Int. J. Numer. Methods Fluids (2016). doi:10.1002/fld.4228

    MathSciNet  Google Scholar 

  14. Qiu, J.X., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, J.X., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.W., Osher, O.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Spiteri, R., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2, 310–333 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Sun, Z.Y., Teng, H.H., Xiao, F.: A slope constrained 4th order multi-moment finite volume method with WENO limiter. Commun. Comput. Phys. 18, 901–930 (2015)

    Article  MathSciNet  Google Scholar 

  22. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  23. Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiao, F., Yabe, T.: Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation. J. Comput. Phys. 170, 498–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, B., Ii, S., Ikebata, A., Xiao, F.: A multi-moment finite volume method for incompressible Navier–Stokes equations on unstructured grids: volume-average/point-value formulation. J. Comput. Phys. 227, 138–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xie, B., Xiao, F.: Two and three dimensional multi-moment finite volume solver for incompressible Navier–Stokes equations on unstructured grids with arbitrary quadrilateral and hexahedral elements. Comput. Fluids 227, 40–54 (2014)

    Article  MathSciNet  Google Scholar 

  28. Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66, 219–232 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556–593 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhong, X., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungang Chen.

Additional information

This work was supported in part by JSPS KAKENHI (Grant No. 15H03916) and National Natural Science Foundation of China (Grant No. 41522504).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Sun, Z., Xie, B. et al. A Non-oscillatory Multi-Moment Finite Volume Scheme with Boundary Gradient Switching. J Sci Comput 72, 1146–1168 (2017). https://doi.org/10.1007/s10915-017-0392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0392-0

Keywords

Navigation