Skip to main content
Log in

Energy-Preserving Algorithms for the Benjamin Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents several hybrid algorithms to preserve the global energy of the Benjamin equation. The Benjamin equation is a non-local partial differential equation involving the Hilbert transform. For this sake, quite few structure-preserving integrators have been proposed so far. Our schemes are derived based on an extended multi-symplectic Hamiltonian system of the Benjamin equation by using Fourier pseudospectral method, finite element method and wavelet collocation method spatially coupled with the AVF method temporally. The local and global properties of the proposed schemes are studied. Numerical experiments are presented to demonstrate the conservative properties of the proposed numerical methods and study the evolutions of the numerical solutions of solitary waves and wave breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Albert, J.P., Bona, J.L., Restrepo, J.M.: Solitary-wave solutions of the Benjamin equation. SIAM J. Appl. Math. 59, 2139–2161 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamin, T.B.: A new kind of solitary wave. J. Fluid Mech. 245, 401–411 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.B.: Solitary and periodic waves of a new kind. Phil. Trans. R. Soc. A 354, 1775–1806 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, J.P., Xu, Z.J.: Comparison of three spectral methods for the Benjamin–Ono equation: Fourier pseudospectral, rational Christov functions and Gaussian radial basis functions. Wave Motion 48, 702–706 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvo, D.C., Akylas, T.R.: On interfacial gravity-capillary solitary waves of the Benjamin type and their stability. Phys. Fluids 15, 1261–1270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6670–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and nonlinear wave equations. Academic Press, London (1982)

    MATH  Google Scholar 

  9. Dougalis, V.A., Durán, A., Mitsotakis, D.E.: Numerical solution of the Benjamin equation. Wave Motion 52, 194–215 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dougalis, V.A., Durán, A., Mitsotakis, D.E.: Numerical approximation of solitary waves of the Benjamin equation. Math. Comput. Simul. 127, 56–79 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gong, Y.Z., Wang, Y.S.: An energy-preserving wavelet collocation method for general multi-symplectic formulations of Hamiltonian PDEs. Commun. Comput. Phys. 20, 1313–1339 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kalisch, H., Bona, J.L.: Models for internal waves in deep water. Discrete Contin. Dyn. Syst. 6, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kinugasa, K., Miyatake, Y., Matsuo, T.: Structure-preserving integrators for the Benjamin-type equations. arXiv preprint arXiv: 1507.08359 (2015)

  14. Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  15. Linares, F.: \(L^2\) global well-posedness of the initial value problem associated to the Benjamin equation. J. Differ. Equ. 152, 377–393 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linares, F., Scialom, M.: On generalized Benjamin type equations. Discrete Contin. Dyn. Syst. 12, 161–174 (2005)

    MathSciNet  MATH  Google Scholar 

  17. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1046 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thomée, V., Vasudeva Murthy, A.S.: A numerical method for the Benjamin–Ono equation. BIT 38, 597–611 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saito, N., Beylkin, G.: Multiresolution repersentations using the autocorrelation functions of compactly supported wavelets. IEEE Trans. Signal Process. 41, 3584–3590 (1993)

    Article  MATH  Google Scholar 

  21. Zhu, H.J., Tang, L.Y., Song, S.H., Tang, Y.F., Wang, D.S.: Symplectic wavelet collocation method for Hamiltonian wave equations. J. Comput. Phys. 229, 2550–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Jiangsu Collaborative Innovation Center for Climate Change, the National Natural Science Foundation of China (Grant Nos. 11271195, 41231173) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Wang, Y. Energy-Preserving Algorithms for the Benjamin Equation. J Sci Comput 72, 605–622 (2017). https://doi.org/10.1007/s10915-017-0371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0371-5

Keywords

Navigation