Skip to main content
Log in

eXtended Hybridizable Discontinuous Galerkin with Heaviside Enrichment for Heat Bimaterial Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel strategy for the hybridizable discontinuous Galerkin (HDG) solution of heat bimaterial problems is proposed. It is based on eXtended finite element philosophy, together with a level set description of interfaces. Heaviside enrichment on cut elements and cut faces is used to represent discontinuities across the interface. A suitable weak form for the HDG local problem on cut elements is derived, accounting for the discontinuous enriched approximation, and weakly imposing continuity or jump conditions over the material interface. The computational mesh is not required to fit the interface, simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Numerical experiments demonstrate that X-HDG keeps the accuracy of standard HDG methods in terms of optimal convergence and superconvergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Assêncio, D.C., Teran, J.M.: A second order virtual node algorithm for stokes flow problems with interfacial forces, discontinuous material properties and irregular domains. J. Comput. Phys. 250, 77–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Encyclopedia of Computational Mechanics, vol. 3 (Fluids), chap. 4. Wiley, New York (2004)

  4. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, H., Wang, B., Xie, Z., Wang, L.L.: An unfitted hybridizable discontinuous Galerkin method for the poisson interface problem and its error analysis. IMA J. Numer. Anal. 37(1), 444–476 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dreau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199(29–32), 1922–1936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fries, T.P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(5), 503–532 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fries, T.P., Belytschko, T.: The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)

    Article  MathSciNet  Google Scholar 

  13. Giorgiani, G., Modesto, D., Fernández-Méndez, S., Huerta, A.: High-order continuous and discontinuous Galerkin methods for wave problems. Int. J. Numer. Methods Fluids 73(10), 883–903 (2013)

    MathSciNet  Google Scholar 

  14. Gürkan, C., Sala-Lardies, E., Kronbichler, M., Fernández-Méndez, S.: eXtended hybridizable discontinous Galerkin (X-HDG) for void problems. J. Sci. Comput. 66(3), 1313–1333 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96(9), 529–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huynh, L.T., Nguyen, N., Peraire, J., Khoo, B.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Meth. Eng. 93(2), 183–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirby, R., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Legrain, G., Chevaugeon, N., Drau, K.: High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput. Methods Appl. Mech. Eng. 241244, 172–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Montlaur, A., Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids 57(9), 1071–1092 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguyen, N., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, B., Khoo, B.: Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow. J. Comput. Phys. 247, 262–278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yakovlev, S., Moxey, D., Kirby, R.M., Sherwin, S.J.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the DAFOH2 Project (Ministerio de Economia y Competitividad, MTM2013-46313-R), the Erasmus Mundus Joint Doctorate SEED Project (European Comission, 2013-1436/001-001-EMJD) and the Catalan Goverment (Generalitat de Catalunya, 2009SGR875). The authors also acknowledge Ms. Esther Sala-Lardies (Universitat Politècnica de Catalunya) for letting them use her library for numerical integration in cut elements, and Prof. John E. Dolbow (Duke University) for the interesting discussions they had on the competitiveness of X-HDG in front of standard X-FEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Fernández-Méndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürkan, C., Kronbichler, M. & Fernández-Méndez, S. eXtended Hybridizable Discontinuous Galerkin with Heaviside Enrichment for Heat Bimaterial Problems. J Sci Comput 72, 542–567 (2017). https://doi.org/10.1007/s10915-017-0370-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0370-6

Keywords

Navigation