Uniform Second Order Convergence of a Complete Flux Scheme on Unstructured 1D Grids for a Singularly Perturbed Advection–Diffusion Equation and Some Multidimensional Extensions


The accurate and efficient discretization of singularly perturbed advection–diffusion equations on arbitrary 2D and 3D domains remains an open problem. An interesting approach to tackle this problem is the complete flux scheme (CFS) proposed by G. D. Thiart and further investigated by J. ten Thije Boonkkamp. For the CFS, uniform second order convergence has been proven on structured grids. We extend a version of the CFS to unstructured grids for a steady singularly perturbed advection–diffusion equation. By construction, the novel finite volume scheme is nodally exact in 1D for piecewise constant source terms. This property allows to use elegant continuous arguments in order to prove uniform second order convergence on unstructured one-dimensional grids. Numerical results verify the predicted bounds and suggest that by aligning the finite volume grid along the velocity field uniform second order convergence can be obtained in higher space dimensions as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal 24, 777–787 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982). FENOMECH ’81, Part I (Stuttgart, 1981)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Chainais-Hillairet, C., Jüngel, A., Shpartko, P.: A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numeri. Methods Partial Differ. Equ. 32(3), 819–846 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    der Maur, Auf M., Povolotskyi, M., Sacconi, F., Pecchia, A., Romano, G., Penazzi, G., Di Carlo, A.: TiberCAD: towards multiscale simulation of optoelectronic devices. Opt. Quantum Electron. 40(14–15), 1077–1083 (2008)

    Article  Google Scholar 

  5. 5.

    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Solution of Equation in \({\mathbb{R}}^n\) (Part 3), Techniques of Scientific Computing (Part 3), Handbook of Numerical Analysis, vol. 7, pp. 713–1018. Elsevier (2000)

  6. 6.

    Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Electronics: numerical methods for drift-diffusion models. In: Handbook of Optoelectronic Device Modeling and Simulation. Taylor & Francis (to appear in 2017)

  7. 7.

    Fuhrmann, J., Langmach, H.: Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Appl. Numer. Math. 37(1–2), 201–230 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Gärtner, K.: DEPFET sensors, a test case to study 3d effects. J. Comput. Electron. 6, 275–278 (2007)

    Article  Google Scholar 

  9. 9.

    Liu, L., van Dijk, J., ten Thije Boonkkamp, J., Mihailova, D., van der Mullen, J.: The complete flux scheme—error analysis and application to plasma simulation. J. Comput. Appl. Math. 250, 229–243 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Macneal, R.H.: An asymmetrical finite difference network. Quart. Math. Appl. 11, 295–310 (1953)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Morton, K.: Numerical Solution Of Convection–Diffusion Problems. Taylor & Francis, Milton Park (1996). Applied Mathematics

    MATH  Google Scholar 

  12. 12.

    Roos, H.G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531–550 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  14. 14.

    Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Device 16(1), 64–77 (1969)

    Article  Google Scholar 

  15. 15.

    Shewchuk, J.: Triangle: a two-dimensional quality mesh generator and Delaunay triangulator. University of California, Berkeley. http://www.cs.cmu.edu/~quake/triangle.html

  16. 16.

    Si, H.: Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11:1–11:36 (2015)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50(1), 38–53 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Stynes, M., O’Riordan, E.: A uniformly accurate finite element method for a singular perturbation problem in conservative form. SIAM J. Numer. Anal. 23(2), 369–375 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Surla, K., Uzelac, Z.: An analysis and improvement of the El Mistikawy and Werle scheme. Publ. Inst. Math. (Beograd) (N.S.) 54(68), 144–155 (1993)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Thiart, G.D.: Improved finite-difference scheme for the solution of convection–diffusion problems with the simplen algorithm. Numer. Heat Transf. Part B 18(1), 81–95 (1990)

    Article  MATH  Google Scholar 

  22. 22.

    ten Thije Boonkkamp, J., Anthonissen, M.: The finite volume-complete flux scheme for advection–diffusion-reaction equations. J. Sci. Comput. 46(1), 47–70 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    ten Thije Boonkkamp, J., Schilders, W.H.: An exponential fitting scheme for the electrothermal device equations specifically for the simulation of avalanche generation. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 12(2), 95–111 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    ten Thije Boonkkamp, J.H.M.: A complete flux scheme for one-dimensional combustion simulation. In: Finite Volumes for Complex Applications IV, pp. 573–583. ISTE, London (2005)

  25. 25.

    van’t Hof, B., ten Thije Boonkkamp, J.H.M., Mattheij, R.M.M.: Discretization of the stationary convection–diffusion-reaction equation. Numer. Methods Partial Differ. Equ. 14(5), 607–625 (1998)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Patricio Farrell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farrell, P., Linke, A. Uniform Second Order Convergence of a Complete Flux Scheme on Unstructured 1D Grids for a Singularly Perturbed Advection–Diffusion Equation and Some Multidimensional Extensions. J Sci Comput 72, 373–395 (2017). https://doi.org/10.1007/s10915-017-0361-7

Download citation


  • Singularly perturbed advection–diffusion equation
  • Uniform second-order convergence
  • Finite-volume method
  • Complete flux scheme

Mathematics Subject Classification

  • 65L11
  • 65L20
  • 65N08
  • 65N12