Skip to main content
Log in

On the Development of a Nonprimitive Navier–Stokes Formulation Subject to Rigorous Implementation of a New Vorticity Integral Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new integral vorticity boundary condition has been developed and implemented to compute solution of nonprimitive Navier–Stokes equation. Global integral vorticity condition which is of primitive character can be considered to be of entirely different kind compared to other vorticity conditions that are used for computation in literature. The procedure realized as explicit boundary vorticity conditions imitates the original integral equation. The main purpose of this paper is to design an algorithm which is easy to implement and versatile. This algorithm based on the new vorticity integral condition captures accurate vorticity distribution on the boundary of computational flow field and can be used for both wall bounded flows as well as flows in open domain. The approach has been arrived at without utilizing any ghost grid point outside of the computational domain. Convergence analysis of this alternative vorticity integral condition in combination with semi-discrete centered difference approximation of linear Stokes equation has been carried out. We have also computed correct pressure field near the wall, for both attached and separated boundary layer flows, by using streamfunction and vorticity field variables. The competency of the proposed boundary methodology vis-a-vis other popular vorticity boundary conditions has been amply appraised by its use in a model problem that embodies the essential features of the incompressibility and viscosity. Subsequently the proposed methodology has been further validated by computing analytical solution of steady Stokes equation. Finally, it has been applied to three benchmark problems governed by the incompressible Navier–Stokes equations, viz. lid driven cavity, backward facing step and flow past a circular cylinder. The results obtained are in excellent agreement with computational and experimental results available in literature, thereby establishing efficiency and accuracy of the proposed algorithm. We were able to accurately predict both vorticity and pressure fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gatski, T.B.: Review of incompressible fluid flow computations using the vorticity–velocity formulation. Appl. Numer. Math. 7, 227–239 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier–Stokes equations: streamfunction-velocity formulation. J. Computat. Phys. 207, 52–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Roache, P.J.: Computational Fluid Dynamics. Hermosa Publishers, New Mexico (1976)

    MATH  Google Scholar 

  4. Weinan, E., Liu, J.-G.: Vorticity boundary condition and related issues for finite difference schemes. J. Comput. Phys. 124, 368–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Napolitano, M., Pascazio, G., Quartapelle, L.: A review of vorticity conditions in the numerical solution of the \(\zeta -\psi \) equations. Comput. Fluids 28, 139–185 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Thom, A.: The flow past circular cylinders at low speeds. Proc. R. Soc. Lond. 141, 651–669 (1933)

    Article  MATH  Google Scholar 

  7. Huang, H., Wetton, B.R.: Discrete compatibility in finite difference methods for viscous incompressible fluid flow. J. Comput. Phys. 126, 468–478 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Orszag, S.A., Israeli, M.: Numerical simulation of viscous incompressible flows. Annu. Rev. Fluid Mech. 6, 281–318 (1974)

    Article  MATH  Google Scholar 

  9. Olson, M.D., Tuann, S.Y.: New finite element results for the square cavity. Comput. Fluids 7, 123–135 (1979)

    Article  MATH  Google Scholar 

  10. Schreiber, R., Keller, H.B.: Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49, 310–333 (1983)

    Article  MATH  Google Scholar 

  11. Sen, S., Kalita, J.C., Gupta, M.M.: A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic streamfunction formulation. Comput. Fluids 84, 141–163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Quartapelle, L., Valz-Gris, F.: Projection conditions on the vorticity in viscous incompressible flows. Int. J. Numer. Methods Fluids 1, 129–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chorin, A.J.: Vortex sheet approximation of boundary layers. J. Comput. Phys. 27, 428–442 (1978)

    Article  MATH  Google Scholar 

  14. Anderson, C.R.: Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows. J. Comput. Phys. 80, 72–97 (1989)

    Article  MATH  Google Scholar 

  15. Sen, S.: A new family of (5,5) CC-4OC schemes applicable for unsteady Navier–Stokes equations. J. Comput. Phys. 251, 251–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Kelly, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM Publications, Philadelphia (1995)

    Book  Google Scholar 

  18. Abdallah, S.: Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-staggered grid. J. Comput. Phys. 70, 182–192 (1987)

    Article  MATH  Google Scholar 

  19. Wang, C., Liu, J.-G.: Analysis of finite difference schemes for unsteady Navier–Stokes equations in vorticity formulation. Numer. Math. 91, 543–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, C.: A general stability condition for multi-stage vorticity boundary conditions in incompressible fluids. Methods Appl. Anal. 15, 469–476 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Peyret, R., Taylor, T.: Computational Methods for Fluid Flow. Springer, New York (1983)

    Book  MATH  Google Scholar 

  22. Briley, W.R.: A numerical study of laminar separation bubbles using Navier–Stokes equations. J. Fluid Mech. 47, 713–736 (1971)

    Article  MATH  Google Scholar 

  23. Woods, L.C.: A note on the numerical solution of fourth-order differential equations. Aeronaut. Q 5, 176–182 (1954)

    MathSciNet  Google Scholar 

  24. D’Alessio, S.J.D., Dennis, S.C.R.: A vorticity model for viscous flow past a cylinder. Comput. Fluids 23, 279–293 (1994)

    Article  MATH  Google Scholar 

  25. Sanyasiraju, Y.V.S.S., Manjula, V.: Flow past an impulsively started circular cylinder using a higher-order semicompact scheme. Phys. Rev. E 72, 0167091–01670910 (2005)

    Article  Google Scholar 

  26. Dipankar, A., Sengupta, T.K., Talla, S.B.: Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. J. Fluid Mech. 573, 171–190 (2007)

    Article  MATH  Google Scholar 

  27. Orszag, S.A., Israeli, M., Deville, M.O.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75–111 (1986)

    Article  MATH  Google Scholar 

  28. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  29. Chiang, T.P., Sheu, T.W.H.: A numerical revisit of backward-facing step flow problem. Phys. Fluids 11, 862–874 (1999)

    Article  MATH  Google Scholar 

  30. Biswas, G., Breuer, M., Durst, F.: Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. Trans. ASME 126, 362–374 (2004)

    Google Scholar 

  31. Le, D.V., Khoo, B.C., Peraire, J.: An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. J. Comput. Phys. 220, 109–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Berthelsen, P.A., Faltinsen, O.M.: A local directional ghost cell approach for incompressible viscous flow problems with irregular boundaries. J. Comput. Phys. 227, 4354–4397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z., Fan, J., Cen, K.: Immersed boundary method for the simulation of 2D viscous flow based on vorticity–velocity formulations. J. Comput. Phys. 228, 1504–1520 (2009)

    Article  MATH  Google Scholar 

  34. Chou, M.-H., Huang, W.: Numerical study of high-Reynolds-number flow past a bluff object. Int. J. Numer. Methods Fluids 23, 711–732 (1996)

    Article  MATH  Google Scholar 

  35. Cheng, M., Chew, Y.T., Luo, S.C.: A hybrid vortex method for flows over a bluff body. Int. J. Numer. Methods Fluids 24, 253–274 (1997)

    Article  MATH  Google Scholar 

  36. Qian, L., Vezza, M.: A vorticity-based method for incompressible unsteady viscous flows. J. Comput. Phys. 172, 515–542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Dr. Deepjyoti Goswami, Department of Mathematical Sciences, Tezpur University, India for some intense discussions. Both the authors are grateful to the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony W. H. Sheu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Sheu, T.W.H. On the Development of a Nonprimitive Navier–Stokes Formulation Subject to Rigorous Implementation of a New Vorticity Integral Condition. J Sci Comput 72, 252–290 (2017). https://doi.org/10.1007/s10915-016-0355-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0355-x

Keywords

Mathematics Subject Classification

Navigation