Skip to main content
Log in

Indirect Boundary Integral Equation Method for the Cauchy Problem of the Laplace Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we examine the Cauchy problem of the Laplace equation. Motivated by the incompleteness of the single-layer potential function method, we investigate the double-layer potential function method. Through the use of a layer approach to the solution, we devise a numerical method for approximating the solution of the Cauchy problem, which are well known to be highly ill-posed in nature. The ill-posedness is dealt with Tikhonov regularization, whilst the optimal regularization parameter is chosen by Morozov discrepancy principle. Convergence and stability estimates of the proposed method are then given. Finally, some examples are given for the efficiency of the proposed method. Especially, when the single-layer potential function method does not give accurate results for some problems, it is shown that the proposed method is effective and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Altiero, N.J., Gavazza, S.D.: On a unified boundary-integral equation method. J. Elast. 10, 1–9 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25, 1–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berntsson, F., Elden, L.: Numerical solution of a Cauchy problem of Laplace equation. Inverse Probl. 17, 839–853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapko, R., Johansson, B.T.: An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite domains. Inverse Probl. Imaging 2, 317–333 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chapko, R., Johansson, B.T.: On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Probl. Imaging 6, 25–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J.T., Chen, K.H., Chen, I.L., et al.: A new concept of modal participation factor for numerical instability in the dual BEM for exterior acoustics. Mech. Res. Commun. 30, 161–174 (2003)

    Article  MATH  Google Scholar 

  7. Chen, J.T., Huang, W.S., Lee, J.W., et al.: A self-regularized approach for deriving the free–free stiffness and flexibility matrices. Comput. Struct. 145, 12–22 (2014)

    Article  Google Scholar 

  8. Chen, J.T., Lin, J.H., Kuo, R.S., et al.: Analytic study and numerical experiments for degenerate scale problems in boundary element methos using degnerate kernels and circulants. Eng. Anal. Bound. Elem. 25, 819–828 (2001)

    Article  MATH  Google Scholar 

  9. Chen, J.T., Lee, Y.T., Kuo, R.S., et al.: Analytic derivation and numercial experiments of degenerate scale for an ellipse in BEM. Eng. Anal. Bound. Elem. 36, 1397–1405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J.T., Han, H.D., Kuo, S.R., et al.: Regularized methods for ill-conditioned system of the integral equations of the first kind. Inverse Probl. Sci. Eng. 22, 1176–1195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J.T., Chang, Y.L., Kao, S.K., et al.: Revisit of indirect boundary element method: sufficient and necessary formulation. J. Sci. Comput. 65(2), 467–485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, J., Hon, Y.C., Wei, T., et al.: Numerical computation of a Cauchy problem for Laplace’s equation. Z. Angew. Math. Mech. 81, 665–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  14. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  15. Engl, E.H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems (Mathematics and Its Applications). Kluwer Academic, Dordrecht (1996)

    Book  MATH  Google Scholar 

  16. Fu, Z.J., Chen, W., Zhang, C.Z.: Boundary particle method for Cauchy inhomogeneous potential problems. Inverse Probl. Sci. Eng. 20, 189–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, Y., Chen, W., Fu, Z.: Singular boundary method for inverse heat conduction problems in general anisotropic media. Inverse Probl. Sci. Eng. 22, 889–909 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hao, D.N., Lesnic, D.: The Cauchy for Laplace’s equation via the conjugate gradient method. IMA J. Appl. Math. 65, 199–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hon, Y.C., Wei, T.: Backus–Gilbert algorithm for the Cauchy problem of Laplace equation. Inverse Probl. 17, 261–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, H., Reinhardt, H.J.: Some stability estimates for Cauchy problems for elliptic equations. J. Inverse lll-Posed Probl. 5, 437–454 (1997)

    MathSciNet  MATH  Google Scholar 

  21. He, W.J., Ding, H.J., Hu, H.C.: Non-equivalence of the conventional boundary integral formulation and its elimination for two-dimensional mixed potential problems. Comput. Struct. 60, 1029–1035 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, W.J.: An equivalent boundary integral formulation for bending problems of thin plates. Comput. Struct. 74, 319–322 (2000)

    Article  Google Scholar 

  23. Hong, H.K., Chen, J.T.: Derivations of integral equations of elasticity. J. Eng. Mech. ASCE 114, 1028–1044 (1998)

    Article  Google Scholar 

  24. Isakov, V.: Inverse Problems for Partial Differential Equations. Springer, New York (1998)

    Book  MATH  Google Scholar 

  25. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences. Springer, New York (2011)

    Book  MATH  Google Scholar 

  26. Kress, R.: Linear Integral Equations, 3rd edn. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  27. Klibanov, M.V., Santosa, F.: A computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM J. Appl. Math. 51, 1653–1675 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuo, R.S., Chen, J.T., Lee, J.W., et al.: Analytical derivation and numerical experiments of degenerate sacle for regular N-gon domains in BEM. Appl. Math. Comput. 219, 929–938 (2013)

    Google Scholar 

  29. Lattes, R., Lions, J.L.: The Method of Quasi-Reversibility: Applications to Partial Differential Equations. Elsevier, New York (1969)

    MATH  Google Scholar 

  30. Lions, J.L.: Equations Differentielles Operationuelles et Problemès aux Limites. Springer, Berlin (1961)

    Book  MATH  Google Scholar 

  31. Marin, L., Lesnic, D.: Boundary element solution for the Cauchy problem in linear elasticity using singular value decomposition. Comput. Methods Appl. Mech. Eng. 191, 3257–3270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marin, L., Lesnic, D.: Regularized boundary element solution for an inverse boundary value problem in linear elasticity. Commun. Numer. Methods Eng. 18, 817–825 (2002)

    Article  MATH  Google Scholar 

  33. Marin, L., Lesnic, D.: Boundary element-Landweber method for the Cauchy problem in linear elasticity. IMA J. Appl. Math. 18, 817–825 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Marin, L.: Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems. Eng. Anal. Bound. Elem. 35, 415–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mitra, A.K., Das, S.: Nonuniqueness in the integral equations formulation of the biharmonic equation in multiply connected domains. Comput. Methods Appl. Mech. Eng. 69, 205–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian, Z., Fu, C.L., Xiong, X.T.: Fourth-order modified method for the Cauchy problem for the Laplace equation. J. Comput. Appl. Math. 192, 205–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rizzo, F.J.: An integral equation approach to boundary value problems in classical elastostatics. Q. Appl. Math. 25, 83–95 (1967)

    Article  MATH  Google Scholar 

  38. Shigeta, T., Young, D.L.: Method of fundamental solutions with optimal regularization techniques for the Cauchy problem of the Laplace equation with singular points. J. Comput. Phys. 228, 1903–1915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, Y., Zhang, D., Ma, F.: A potential function method for the Cauchy problem of elliptic operators. J. Math. Anal. Appl. 395, 164–174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sun, Y.: Modified method of fundamental solutions for the Cauchy problem connected with the Laplace equation. Int. J. Comput. Math. 91, 2185–2198 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Takeuchi, T., Yamamoto, M.: Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation. SIAM J. Sci. Comput. 31(1), 112–142 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tautenhahn, U.: Optimal stable solution of Cauchy problems for elliptic equations. Z. Anal. Anwend. 15, 961–984 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, T., Hon, Y.C., Ling, L.: Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng. Anal. Bound. Elem. 31, 373–385 (2007)

    Article  MATH  Google Scholar 

  44. Wei, T., Zhou, D.Y.: Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions. Adv. Comput. Math. 33, 491–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wong, K.Y., Ling, L.: Optimality of the method of fundamental solutions. Eng. Anal. Bound. Elem. 35(1), 42–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiong, X.T., Fu, C.L.: Central difference regularization method for the Cauchy problem of the Laplace’s equation. Appl. Math. Comput. 181, 675–684 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Yang, F.L., Ling, L.: On numerical experiments for Cauchy problems of elliptic operators. Eng. Anal. Bound. Elem. 35, 879–882 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor and the referee for their careful reading and valuable comments which improved the quality of the original submitted manuscript. The research was supported by the open Research Funds of Tianjin Key Lab for Advanced Signal Processing (No. 2016ASP-TJ02), the Natural Science Foundation of China (No. 11501566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y. Indirect Boundary Integral Equation Method for the Cauchy Problem of the Laplace Equation . J Sci Comput 71, 469–498 (2017). https://doi.org/10.1007/s10915-016-0308-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0308-4

Keywords

Mathematics Subject Classification

Navigation