Skip to main content
Log in

Convergence to Suitable Weak Solutions for a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we prove that weak solutions constructed by a variational multiscale method are suitable in the sense of Scheffer. In order to prove this result, we consider a subgrid model that enforces orthogonality between subgrid and finite element components. Further, the subgrid component must be tracked in time. Since this type of schemes introduce pressure stabilization, we have proved the result for equal-order velocity and pressure finite element spaces that do not satisfy a discrete inf-sup condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev, Spaces Volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2013)

    Google Scholar 

  2. Badia, S.: On stabilized finite element methods based on the Scott-Zhang projector. Circumventing the inf-sup condition for the Stokes problem. Comput. Methods Appl. Mech. Eng. 247–248, 65–72 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia, S., Codina, R., Gutiérrez-Santacreu, J.V.: Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier-Stokes equations with numerical subgrid scale modeling. SIAM J. Numer. Anal. 48(3), 1013–1037 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badia, S., Gutiérrez-Santacreu, J.V.: Convergence towards weak solutions of the Navier–Stokes equations for a finite element approximation with numerical subgrid-scale modelling. IMA J. Numer. Anal. 34(3), 1193–1221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoluzza, S.: The discrete commutator property of approximation spaces. C. R. Acad. Sci. Paris Sér. I Math. 329(12), 1097–1102 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199 (1992)

    Article  Google Scholar 

  8. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in applied mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  9. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Codina, R., Blasco, J.: Stabilized finite element method for the transient Navier–Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Eng. 182, 277–300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Codina, R., Principe, J., Guasch, O., Badia, S.: Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196(21–24), 2413–2430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colomés, O., Badia, S., Codina, R., Principe, J.: Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows. Comput. Methods Appl. Mech. Eng. 285, 32–63 (2015)

    Article  MathSciNet  Google Scholar 

  13. Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20(1), 74–97 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004)

    Book  MATH  Google Scholar 

  15. Girault, V., Raviart, P.-A.: Finite element approximation of the Navier-Stokes equations, Volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1979)

    Book  Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). (Theory and algorithms)

    Google Scholar 

  17. Grinstein, F.F., Margollin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1985)

    Google Scholar 

  19. Guasch, O., Codina, R.: Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows. Comput. Methods Appl. Mech. Eng. 261–262, 154–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guermond, J.-L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guermond, J.-L.: Finite-element-based Faedo-Galerkin weak solutions to the Navier–Stokes equations in the three-dimensional torus are suitable. Journal de Mathématiques Pures et Appliquées 85(3), 451–464 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond, J.-L.: Faedo-Galerkin weak solutions of the Navier–Stokes equations with Dirichlet boundary conditions are suitable. J. Math. Pures Appl. (9) 88(1), 87–106 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guermond, J.-L.: On the use of the notion of suitable weak solutions in CFD. Int. J. Numer. Methods Fluids 57(9), 1153–1170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guermond, J.-L.: The LBB condition in fractional Sobolev spaces and applications. IMA J. Numer. Anal. 29(3), 790–805 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guermond, J.-L., Pasciak, J.E.: Stability of discrete Stokes operators in fractional Sobolev spaces. J. Math. Fluid Mech. 10(4), 588–610 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T.J.R., Mazzei, L., Jansen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  29. Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21(4), 397–431 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  31. Lin, F.H.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  33. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968)

    MATH  Google Scholar 

  34. Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Temam, R.: Navier-Stokes Equations. AMS Chelsea Publishing, Providence (2001). (Theory and numerical analysis, Reprint of the 1984 edition)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Professor Vivette Girault who provided a proof of a particular case of inequality (8).

This article was funded by Secretaría de Estado de Investigación, Desarrollo e Innovación and European Research Council with Grant Number MTM2015-69875-P and Starting Grant No. 258443 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Vicente Gutiérrez-Santacreu.

Additional information

SB was partially supported by the European Research Council under the FP7 Program Ideas through the Starting Grant No. 258443 - COMFUS: Computational Methods for Fusion Technology and the FP7 NUMEXAS project under Grant Agreement 611636. SB gratefully acknowledges the support received from the Catalan Government through the ICREA Acadèmia Research Program.

JVGS was partially supported by the Spanish Grant No. MTM2015-69875-P from Ministerio de Economía y Competitividad with the participation of FEDER.

Appendix: Proof of the Inverse Inequalities (8)

Appendix: Proof of the Inverse Inequalities (8)

To prove inequalities (8), we follow very closely the arguments developed in [8, Thm. 4.5.11].

We first need to introduce an equivalent norm for fractional order Hilbert spaces as follows. Let \(s\in (0,1)\). Then

$$\begin{aligned} \Vert u\Vert ^2_{H^s(\Omega )}=\Vert u\Vert ^2+|u|^2_{H^s(\Omega )}, \end{aligned}$$

where

$$\begin{aligned} |u|^2_{H^s(\Omega )}=\int _\Omega \int _\Omega \frac{|u(\varvec{x})-u(\varvec{y})|^2}{|\varvec{x}-\varvec{y}|^{3+2s}}\,\mathrm{d}\varvec{x}\,\mathrm{d}\varvec{y}. \end{aligned}$$

Given \((K,{\mathcal {P}}, \Sigma )\), we define \((\tilde{K}, \tilde{P}, \tilde{\Sigma })\) where \(\hat{K}=\{(1/h_K)\varvec{x}: \varvec{x}\in K\}\). Thus, if \(u_h\) is a function defined on K, then \(\hat{u}_h\) is defined on \( \tilde{K}\) by

$$\begin{aligned} \hat{u}(\hat{\varvec{x}})=u ( h_K^{-1}\varvec{x})\quad {\text { for all }} \quad \hat{\varvec{x}}\in \hat{K}. \end{aligned}$$

Thus we can write

$$\begin{aligned} \Vert \nabla u_h\Vert _{\varvec{L}^2(K)}= h_K^{\frac{1}{2}} \Vert \hat{\nabla }\hat{u}_h\Vert _{\varvec{L}^2(K)}. \end{aligned}$$

As \(\hat{\nabla }\hat{u}_h\) belongs to a space of finite and fixed dimension on \(\hat{K}\), on which all norms are equivalent, it is not hard to see that there is a constant \( C_{\hat{T}}>0\) such that

$$\begin{aligned} \Vert \hat{\nabla }\hat{u}_h\Vert _{\varvec{L}^2(K)}\le C_{\hat{T}} |\hat{u}_h|_{H^s(\hat{K})}. \end{aligned}$$

Reverting to K, this leads to

$$\begin{aligned} \Vert \hat{\nabla } \hat{u}\Vert _{\varvec{L}^2}\le C_{\hat{T}} h_K^{-\frac{3}{2}+s} |u_h|_{H^{s}(K)} \end{aligned}$$

and hence

$$\begin{aligned} \Vert \nabla u_h\Vert _{\varvec{L}^2(K)}\le C_{\hat{T}} h^{-1+s}_K \Vert u_h\Vert _{H^s(\Omega )}. \end{aligned}$$

An argument in the proof of [8, Prop. 4.4.11] shows that if \((\tilde{K}, \tilde{{\mathcal {P}}}, \tilde{\Sigma })\) is a referent element, we have that there exists a constant \(C_{\tilde{T}}>0\) such that \(C_{\hat{T}}\le C_{\tilde{T}}\). Summing over all elements K and using the quasi-uniformity of the mesh leads to

$$\begin{aligned} \Vert \nabla u_h\Vert \le C h^{-1+s} \left( \sum _{K\in {\mathcal {T}}_h} \Vert u_h\Vert _{H^s(\Omega )}^2\right) . \end{aligned}$$

Then (8) follows because the sum of the fractional norms over all elements is smaller than the fractional norm over the union of the elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badia, S., Gutiérrez-Santacreu, J.V. Convergence to Suitable Weak Solutions for a Finite Element Approximation of the Navier–Stokes Equations with Numerical Subgrid Scale Modeling. J Sci Comput 71, 386–413 (2017). https://doi.org/10.1007/s10915-016-0304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0304-8

Keywords

Mathematics Subject Classification

Navigation