Skip to main content
Log in

Mixed Methods for a Stream-Function – Vorticity Formulation of the Axisymmetric Brinkman Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to the numerical analysis of a family of finite element approximations for the axisymmetric, meridian Brinkman equations written in terms of the stream-function and vorticity. A mixed formulation is introduced involving appropriate weighted Sobolev spaces, where well-posedness is derived by means of the Babuška–Brezzi theory. We introduce a suitable Galerkin discretization based on continuous piecewise polynomials of degree \(k\ge 1\) for all the unknowns, where its solvability is established using the same framework as the continuous problem. Optimal a priori error estimates are derived, which are robust with respect to the fluid viscosity, and valid also in the pure Darcy limit. A few numerical examples are presented to illustrate the convergence and performance of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdellatif, N.: Méthodes spectrales et d’éléments spectraux pour les équations de Navier–Stokes axisymétriques. PhD Thesis. Pierre and Marie Curie University, Paris (1997)

  2. Abdellatif, N.: A mixed stream-function and vorticity formulation for axisymmetric Navier–Stokes equations. J. Comput. Appl. Math. 117(1), 61–83 (2000)

  3. Abdellatif, N., Bernardi, C.: A new formulation of the Stokes problem in a cylinder, and its spectral discretization. Esaim Math. Model Numer. Anal. 38(5), 781–810 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdellatif, N., Touihri, M., El Amin, M.: Spectral element discretization for the stream-function and vorticity formulation of the axisymmetric Stokes problem. Calcolo. 53(3), 343–361 (2016)

  5. Abdellatif, N., Chorfi, N., Trabelsi, S.: Spectral discretization of the axisymmetric vorticity, velocity and pressure formulation of the Stokes problem. J. Sci. Comput. 47, 419–440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flows. ESAIM. Math. Model. Numer. Anal. 49(3), 855–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anaya, V., Mora, D., Ruiz-Baier, R.: Pure vorticity formulation and Galerkin discretization for the Brinkman equations. IMA J. Numer. Anal. in press. doi:10.1093/imanum/drw056

  8. Aouadi, S.M., Bernardi, C., Satouri, J.: Mortar spectral element discretization of the Stokes problem in axisymmetric domains. Numer. Methods Part. Diff. Eqns. 30, 44–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Auriault, J.-L.: On the domain of validity of Brinkman’s equation. Transp. Porous Med. 79, 215–223 (2009)

    Article  MathSciNet  Google Scholar 

  10. Azaiez, M.: A spectral element projection scheme for incompressible flow with application to the unsteady axisymmetric Stokes problem. J. Sci. Comput. 17, 573–584 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barragy, E., Carey, G.F.: Stream function-vorticity driven cavity solutions using \(p\) finite elements. Comput. Fluids 26(5), 453–468 (1997)

    Article  MATH  Google Scholar 

  12. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  13. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier–Stokes avec conditions aux limites sur la pression. Nonlinear Partial Differ. Equ. Appl. Coll. de Fr. Semin. Ix, 179–264 (1988)

  14. Belhachmi, Z., Bernardi, C., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105, 217–247 (2002)

  15. Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris (1999)

  16. Carneiro de Araujo, J.H., Ruas, V.: A stable finite element method for the axisymmetric three-field Stokes system. Comput. Methods Appl. Mech. Eng. 164, 267–286 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Copeland, D.M., Gopalakrishnan, J., Pasciak, J.E.: A mixed method for axisymmetric div-curl systems. Math. Comp. 77, 1941–1965 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deparis, S.: Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation. PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, (2004)

  19. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  20. Ervin, V.J.: Approximation of coupled Stokes–Darcy flow in an axisymmetric domain. Comput. Methods Appl. Mech. Eng. 258, 96–108 (2013)

  21. Gatica, G.N.: A simple introduction to the mixed finite element method. In: Theory and Applications. Springer Briefs in Mathematics. Springer, London (2014)

  22. Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126(4), 635–677 (2014)

  23. Ghadi, F., Ruas, V., Wakrim, M.: A mixed finite element method to solve the Stokes problem in the stream function and vorticity formulation. Hiroshima Math. J. 28, 381–398 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986)

  25. Gopalakrishnan, J., Pasciak, J.: The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comp. 75, 1697–1719 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1983)

    MATH  Google Scholar 

  27. Li, Y., Zhou, Y., Sun, D.M., Wang, Z.L.: The numerical simulation for engine oil filter shell. Appl. Mech. Materials 533, 101–105 (2014)

    Article  Google Scholar 

  28. Lyle, S., Huppert, H.E., Hallworth, M., Bickle, M., Chadwick, A.: Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293–302 (2005)

    Article  MATH  Google Scholar 

  29. Mercier, B., Raugel, G.: Resolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \(r, z\) et séries de Fourier en \(\theta \). RAIRO Anal. Numér. 16, 405–461 (1982)

  30. Mueller, T.J., Sule, W.P., Fanning, A.E., Giel, T.V., Galanga, F.L.: Analytical and experimental study of axisymmetric truncated plug nozzle flow fields. NASA technical report UNDAS TN-601-FR-10, University of Notre Dame, 1972/09

  31. Nassehi, V., Parvazinia, M.: Finite Element Modeling of Multiscale Transport Phenomena. Imperial College Press, London (2011)

    MATH  Google Scholar 

  32. Pavel, B.I., Mohamad, A.A.: An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. Int. J. Heat Mass Transfer 47, 4939–4952 (2004)

    Article  Google Scholar 

  33. Ruas, V.: Mixed finite element methods with discontinuous pressures for the axisymmetric Stokes problem. ZAMM Z. Angew. Math. Mech. 83, 249–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tezduyar, T.E., Liou, J.: On the downstream boundary conditions for the vorticity-stream function formulation of two-dimensional incompressible flows. Comput. Methods Appl. Mech. Eng. 85, 207–217 (1991)

    Article  MATH  Google Scholar 

  35. Van de Geest, J.P., Simon, B.R.: Analytical solutions to axisymmetric plane strain porous media-transport models in large arteries. ASME Proc. SBC2008. B (2009), 647–648

Download references

Acknowledgments

The first author was supported by CONICYT-Chile through FONDECYT Project 11160706 and by DIUBB through Projects 165608-3/R and 151408 GI/VC. The second author was partially supported by CONICYT-Chile through FONDECYT project 1140791, by DIUBB through project 151408 GI/VC and by Anillo ANANUM, ACT1118, CONICYT (Chile). The fourth author acknowledges the support by the Elsevier Mathematical Sciences Sponsorship Fund MSSF-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Reales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, V., Mora, D., Reales, C. et al. Mixed Methods for a Stream-Function – Vorticity Formulation of the Axisymmetric Brinkman Equations. J Sci Comput 71, 348–364 (2017). https://doi.org/10.1007/s10915-016-0302-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0302-x

Keywords

Mathematics Subject Classification

Navigation