Skip to main content
Log in

The Effect of the Consistent Mass Matrix on the Maximum-Principle for Scalar Conservation Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study the effect of the use of the consistent mass matrix when solving scalar nonlinear conservation equations. It is shown that a continuous finite element method based on artificial viscosity in space and explicit time stepping using the consistent mass matrix cannot satisfy the maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badia, S., Hierro, A.: On monotonicity-preserving stabilized finite element approximations of transport problems. SIAM J. Sci. Comput. 36(6), A2673–A2697 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burman, E.: On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws. BIT 47(4), 715–733 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput. 74(252), 1637–1652 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christon, M.A., Martinez, M.J., Voth, T.E.: Generalized Fourier analyses of the advection-diffusion equation-part I: one-dimensional domains. Int. J. Numer. Methods Fluids 45(8), 839–887 (2004)

    Article  MATH  Google Scholar 

  5. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)

    Google Scholar 

  6. Dow, M.: Explicit inverses of toeplitz and associated matrices. ANZIAM J. 44(E), E185–E215 (2003)

  7. Gresho, P., Sani, R., Engelman, M.: Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Incompressible Flow & the Finite Element Method. Wiley, New York (1998)

    MATH  Google Scholar 

  8. Guermond, J.-L., Nazarov, M.: A maximum-principle preserving \({C}^0\) finite element method for scalar conservation equations. Comput. Methods Appl. Mech. Eng. 272, 198–213 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guermond, J.-L., Pasquetti, R.: A correction technique for the dispersive effects of mass lumping for transport problems. Comput. Methods Appl. Mech. Eng. 253, 186–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guermond, J.-L., Popov, B.: Invariant domains and first-order continuous finite element approximation for hyperbolic systems. SIAM J. Numer. Anal. 54(4), 2466–2489 (2016) arXiv:1509.07461

  11. Jameson A.: Positive schemes and shock modelling for compressible flows. Int. J. Numer. Methods Fluids 20(8-9), 743–776 (1995). Finite elements in fluids—new trends and applications (Barcelona, 1993)

  12. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  13. Kuzmin, D., Löhner, R., Turek, S.: Flux–Corrected Transport. Scientific Computation. Springer, ISBN: 3-540-23730-5 (2005)

  14. Kuzmin, D., Turek, S.: Flux correction tools for finite elements. J. Comput. Phys. 175(2), 525–558 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leer, V.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  MATH  Google Scholar 

  17. Mehmetoglu, O., Popov, B.: Maximum principle and convergence of central schemes based on slope limiters. Math. Comput. 81(277), 219–231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osher, S.: Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21(2), 217–235 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomée, V., Wahlbin, L .B.: On the existence of maximum principles in parabolic finite element equations. Math. Comput. 77(261), 11–19 (2008). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Guermond.

Additional information

This material is based upon work supported in part by the National Science Foundation Grants DMS-1217262, by the Air Force Office of Scientific Research, USAF, under Grant/Contract Number FA9550-15-1-0257, and by the Army Research Office under Grant/Contract Number W911NF-15-1-0517. Draft version, September 7, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guermond, JL., Popov, B. & Yang, Y. The Effect of the Consistent Mass Matrix on the Maximum-Principle for Scalar Conservation Equations. J Sci Comput 70, 1358–1366 (2017). https://doi.org/10.1007/s10915-016-0285-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0285-7

Keywords

Mathematics Subject Classfication

Navigation