Skip to main content
Log in

Nonlinear Advection–Diffusion–Reaction Phenomena Involved in the Evolution and Pumping of Oil in Open Sea: Modeling, Numerical Simulation and Validation Considering the Prestige and Oleg Naydenov Oil Spill Cases

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The main goal of this article is to improve upon a previous model used to simulate the evolution of oil spots in the open sea and the effect of a skimmer ship pumping oil out from the spots. The concentration of the pollutant is subject to the effects of wind and sea currents, diffusion, and the pumping action of a skimmer (i.e., cleaning) ship that follows a pre-assigned trajectory. This implies that the mathematical model is of the advection–diffusion–reaction type. A drawback of our previous model was that diffusion was propagating with infinite velocity; in this article, we use an improved model relying on a nonlinear diffusion term, implying that diffusion propagates with finite velocity. To reduce numerical diffusion when approximating the advection part of the model, we consider second order discretization schemes with nonlinear flux limiters. We consider also absorbing boundary conditions to insure accurate results near the boundary. To reduce CPU time we use an operator-splitting scheme for the time discretization. Finally, we also introduce the modeling of coastlines and dynamic sources of pollutant. The novel approach we advocate in this article is validated by comparing our numerical results with real life measurements from the Oleg Naydenov and the Prestige oil spills, which took place in Spain in 2015 and 2002, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abascal, A.J., Castanedo, S., Mendez, F.J., Medina, R., Losada, I.J.: Calibration of a Lagrangian transport model using drifting buoys deployed during the prestige oil spill. J. Coast. Res. 251, 80–90 (2009)

    Article  Google Scholar 

  2. Alavani, C., Glowinski, R., Gomez, S., Ivorra, B., Joshi, P., Ramos, A.M.: Modelling and simulation of a polluted water pumping process. Math. Comput. Model. 51, 461–472 (2010)

    Article  MATH  Google Scholar 

  3. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  Google Scholar 

  4. Balseiro, C.F., Carracedo, P., Gmez, B., Leito, P.C., Montero, P., Naranjo, L., Penabad, E., Prez-Muuzuri, V.: Tracking the Prestige oil spill: an operational experience in simulation at MeteoGalicia. Weather 58(12), 452–458 (2003)

    Article  Google Scholar 

  5. Canarias Ahora, Detectadas dos manchas en puntos prximos a la costa oeste de Gran Canaria (2015). http://www.eldiario.es/canariasahora/sociedad/Detectadas-manchas-proximos-Gran-Canaria_0_382862365.html

  6. Carpenter, A.D., Dragnich, R.G.: Marine operations and logistics during the Exxon Valdez spill cleanup. In: Oil Spill Conference Proceedings, pp. 205–211 (1991)

  7. Castanedo, S., Medina, R., Losada, I.J., Vidal, C., Mndez, F.J., Osorio, J., Puente, A.: The Prestige oil spill in Cantabria (Bay of Biscay). Part I: operational forecasting system for quick response, risk assessment and protection of natural resources. J. Coast. Res. 22(6), 1474–1489 (2006)

    Article  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daling, P.S., Moldestad, M.O.: The Prestige oil-weathering properties. Mar. Environ. Technol. 2, 1–4 (2003)

    Google Scholar 

  10. Dullemond, C.P.: Lecture on Numerical Fluid Dynamics. University of Heidelberg, Summer Semester (2008). http://www.mpia.de/homes/dullemon/lectures/fluiddynamics08/

  11. El País, La gran mancha de fuel se aleja de Canarias tras una semana de vertidos (2015). http://politica.elpais.com/politica/2015/04/21/actualidad/1429638427_784374.html

  12. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Europa Press, Fomento vigila las zonas sur y suroeste de Gran Canaria tras detectarse restos de fuel en Meloneras y Tauro (2015). http://www.europapress.es/islas-canarias/noticia-fomento-vigila-zonas-sur-suroeste-gran-canaria-detectarse-restos-fuel-meloneras-tauro-20150503141309.html

  14. Fingas, M.: The Basics of Oil Spill Cleanup, 2nd edn. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  15. Glowinski, R., Neittaanmaki, P.: Partial Differential Equations. Modelling and Numerical Simulation, Series: Computational Methods in Applied Sciences. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  16. Gomez, S., Ivorra, B., Ramos, A.M.: Optimization of a pumping ship trajectory to clean oil contamination in the open sea. Math. Comput. Model. 54(1), 477–489 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gomez, S., Ivorra, B., Ramos, A.M., Glowinski, R.: Modeling the optimal trajectory of a skimmer ship to clean oil spills in the open sea. In: Proceedings of the 2015 SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference, OnePetro & Society of Petroleum Engineers, Document ID: SPE-174150-MS (2015)

  18. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann Ltd, London (2007)

    Google Scholar 

  19. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer-Verlag Berlin Heidelberg, Berlin, Germany (2003)

  20. Ivorra, B., Gomez, S., Ramos, A.M.: Modeling and forecasting the 2015 Oleg Naydenov oil spill near the Canary Islands. E-prints of the University Complutense of Madrid, Ref. 29824 (2015). http://eprints.ucm.es/29824/

  21. Kassam, A.: Oil spill reaches coast of Gran Canaria, The Guardian (2015). http://www.theguardian.com/world/2015/apr/24/spanish-fuel-oil-spill-russian-oleg-naydenov-gran-canaria

  22. Kröner, D.: Absorbing boundary conditions for the linearized Euler equations in 2-D. Math. Comput. 57(195), 153–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Loureiro, M.L., Ribas, A., Lpez, E., Ojea, E.: Estimated costs and admissible claims linked to the Prestige oil spill. Ecol. Econ. 59(1), 48–623 (2006)

    Article  Google Scholar 

  24. Mihail Mitev, Marine authorities survey the Oleg Naydenov Wreck, Vessel Finder (2015). http://www.vesselfinder.com/news/3275-Video-Marine-authorities-survey-the-Oleg-Naydenov-Wreck

  25. Montero, P., Blanco, J., Cabanas, J.M., Maneiro, J., Pazos, Y., Moroo, A., Balseiro, C.F., Carracedo, P., Gmez, B., Penabad, E., Perez-Muuzuri, V., Braunschweig, F., Fernades, R., Leitao, P.C., Neves, R.: Oil spill monitoring, forecasting on the Prestige-Nassau accident. In: Proceedings 26th Arctic Marine Oil Spill Program (AMOP) Technical Seminar, vol. 2, pp. 1013–1029 (2003)

  26. Murray, S.P.: Turbulent diffusion of oil in the ocean. J. Limnol. Oceanogr. 17(5), 651–660 (1972)

    Article  Google Scholar 

  27. N.O.A.A., Oil spill case histories 1967–1991. Summaries of significant U.S. and International Spills, Office of Response and Restoration of the U.S. National Ocean, Report HMRAD 92-11 (1992)

  28. Roe, P.L.: Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18, 337–365 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skinner, S.K., Reilly, W.K.: The Exxon Valdez Oil Spill. National Response Team (2008)

  30. Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater Engineering, Treatment and Reuse, 4th edn. Metcalf and Eddy, McGraw-Hill, NewYork (2002)

  31. Van Albada, G.D., Van Leer, B., Roberts, W.W.: A comparative study of computational methods in cosmic gas dynamics. Astron. Astrophys. 108, 76–84 (1982)

    MATH  Google Scholar 

  32. Van Leer, B.: Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second order scheme. J. Comput. Phys. 14(4), 361–370 (1974)

    Article  MATH  Google Scholar 

  33. Van Leer, B.: Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23(3), 263–275 (1977)

    Article  MATH  Google Scholar 

  34. Visser, A.: Historical tankers site. A-Whale characteristics. http://www.aukevisser.nl/supertankers/bulkers/id453.htm

  35. Wilson, E.K.: Oil Spill’s Size Swells, Chemical and Engineering News. American Chemical Society Publications, Washington (2010)

Download references

Acknowledgments

This work was carried out thanks to the financial support of the Spanish “Ministry of Economy and Competitiveness” under project MTM2011-22658; the research group MOMAT (Ref. 910480) supported by “Banco Santander” and “Universidad Complutense de Madrid”; the “Junta de Andalucía” and the European Regional Development Fund through Project P12-TIC301; the “European Space Agency” through Project 14161; the research center “Mercator Ocean” trough Project 2012_130/NCUTD/59; the Spanish “Agencia Estatal de Meteorología” trough project 990130301; and the PAPIIT project of the National University of Mexico. We would like to thank the Spanish agency “Puerto de Estados”, the company “Novetec” and Nelson del Castillo for their valuable help during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Ivorra.

Appendix: Review of the Piecewise Linear Schemes and of the Limiters

Appendix: Review of the Piecewise Linear Schemes and of the Limiters

Suppose that we want to approximate the solution of the following 1-D equation

$$\begin{aligned} \begin{array}{rl} \dfrac{\partial c}{\partial t} + \dfrac{\partial (vc)}{\partial x}=0&\hbox {in } {\varTheta }\times ( 0,T ). \end{array} \end{aligned}$$
(18)

Here c is the concentration, v is the velocity and \({\varTheta }=[\underline{{\varTheta }},\overline{{\varTheta }}]\), where \(\underline{{\varTheta }} \) and \(\overline{{\varTheta }}\) belong both to \( \mathbb {R}\), and are, respectively, the lower and upper boundaries of the interval \({\varTheta }\). Next, interval \({\varTheta }\) is decomposed into I finite volume cells (intervals here), that we denote by \({\varTheta }_i=[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}]\). For simplicity of notation, we assume first that \(v>0\) is constant and that the lengths of the intervals \({\varTheta }_i\) are all the same, and equal to \(\Delta x\).

One way to obtain such an approximation is, for instance, to assume that in each finite volume \({\varTheta }_i\), with \(i=1,\ldots ,I\), the concentration c is constant throughout the volume. This simplification allows to generate first order numerical schemes, such as the upwind scheme used in [2]. However, it was observed that this scheme produces a high level of artificial diffusion. To address this issue, it would be better to assume that the concentration within each volume \({\varTheta }_i\) is an affine function of the position (see [32]).

In this case, in \({\varTheta }_i\) at time \(t_n\) the concentration can be linearly approximated by:

$$\begin{aligned} c(x,t_n)=c^n_i+\sigma _i^n (x-x_i) \hbox {, for } x \in {\varTheta }_i, \end{aligned}$$
(19)

where \(x_i\) is the center of \({\varTheta }_i\), \(c^n_i=c(x_i,t_n)\) and \(\sigma _i^n\) is the slope of the linear approximation. We note that \(\sigma _i^n\) can be defined in several ways. For instance

  • \(\sigma _i^n=\dfrac{c^{n}_{i+1}- c^{n}_{i-1}}{2\Delta x}\), in this case we obtain the Fromm method.

  • \(\sigma _i^n=\dfrac{c^{n}_{i}- c^{n}_{i-1}}{\Delta x}\), in this case we obtain the Beam–Warming method.

  • \(\sigma _i^n=\dfrac{c^{n}_{i+1}- c^{n}_{i}}{\Delta x}\), in this case we obtain the Lax–Wendroff method.

For these three cases, \(c^n_i\) is equal to the average of \(c(x,t_n)\) over \({\varTheta }_i\).

At the boundary \(x_{i-\frac{1}{2}}\), the flux \(f_{i-\frac{1}{2}}(t)\), with t in the time interval \([t_n,\) \(t_{n+1}]\), is:

$$\begin{aligned} f_{i-\frac{1}{2}}(t)= & {} v c(x_{i-\frac{1}{2}},t)=v c(x_{i-\frac{1}{2}}-v(t-t_n),t_n)\\= & {} v c^n_{i-1}+ v \sigma _{i-1}^n \left( \frac{1}{2}\Delta x - v(t-t_n) \right) . \end{aligned}$$

At the boundary \(x_{i+\frac{1}{2}}\), the flux \(f_{i+\frac{1}{2}}(t)\), with t in the time interval \([t_n,\) \(t_{n+1}]\), is:

$$\begin{aligned} f_{i+\frac{1}{2}}(t)= & {} v c(x_{i+\frac{1}{2}},t)=v c(x_{i+\frac{1}{2}}-v(t-t_n),t_n)\\= & {} v c^n_{i}+ v \sigma _{i}^n \left( \frac{1}{2}\Delta x - v(t-t_n) \right) . \end{aligned}$$

Thus, on the time interval \([t_n, t_{n+1}]\) the variation of concentration over the volume \({\varTheta }_i\) is given by

$$\begin{aligned} \dfrac{c^{n+1}_i-c^n_i}{\Delta t}=\dfrac{f^{n+\frac{1}{2}}_{i-\frac{1}{2}}-f^{n+\frac{1}{2}}_{i+\frac{1}{2}}}{\Delta x}, \end{aligned}$$

where \(f^{n+\frac{1}{2}}_{i\pm \frac{1}{2}}=\dfrac{1}{\Delta t} {\int }_{t_n}^{t_{n+1}} f_{i\pm \frac{1}{2}}(t) \mathrm {d} t\) denotes the flux average during the time interval \([t_{n},t_{n+1}]\) which is similar to the flux at \(\dfrac{t_{n+1}+t_{n}}{2}\).

Considering that

$$\begin{aligned} f^{n+\frac{1}{2}}_{i-\frac{1}{2}}-f^{n+\frac{1}{2}}_{i+\frac{1}{2}} = v (c^n_{i-1}-c^n_{i})+ \dfrac{1}{2}v( \sigma _{i-1}^n - \sigma _{i}^n) ( \Delta x - v\Delta t ), \end{aligned}$$

we obtain the following space-time discretization scheme:

$$\begin{aligned} c^{n+1}_i=c^n_i+\dfrac{\Delta t}{\Delta x} \left( v (c^n_{i-1}-c^n_{i})+ \dfrac{1}{2}v( \sigma _{i-1}^n - \sigma _{i}^n) ( \Delta x - v\Delta t ) \right) \end{aligned}$$
(20)

Now, we generalize scheme (20) to the case of non constant velocities \(v: {\varTheta }\rightarrow \mathbb {R}\).

In this case

$$\begin{aligned} f^{n-\frac{1}{2}}_{i-\frac{1}{2}}= & {} \dfrac{1}{2}v_{i-\frac{1}{2}} \left[ (1+\beta _{i-\frac{1}{2}})c_{i-1}^n+(1-\beta _{i-\frac{1}{2}})c_{i}^n\right] \nonumber \\&+\, \dfrac{1}{4}|v_{i-\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i-\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \Delta x \left[ (1+\beta _{i-\frac{1}{2}})\sigma _{i-1}^n+(1-\beta _{i-\frac{1}{2}})\sigma _{i}^n\right] , \end{aligned}$$
(21)

and

$$\begin{aligned} f^{n+\frac{1}{2}}_{i+\frac{1}{2}}= & {} \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}})c_{i}^n+(1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \nonumber \\&+\, \dfrac{1}{4}|v_{i+\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i+\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \Delta x \left[ (1+\beta _{i+\frac{1}{2}})\sigma _{i}^n+(1-\beta _{i+\frac{1}{2}})\sigma _{i+1}^n\right] , \end{aligned}$$
(22)

where \(\beta _{i\pm \frac{1}{2}}=1\) if \(v_{i\pm \frac{1}{2}}\ge 0\) or \(=-1\) if \(v_{i\pm \frac{1}{2}}<0\).

Thus, scheme (20) becomes:

$$\begin{aligned} c^{n+1}_i= & {} c^n_i+\dfrac{\Delta t}{\Delta x} \left( \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}})c_{i}^n+ (1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \right. \nonumber \\&+\, \dfrac{1}{4}|v_{i-\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i-\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \Delta x \left[ (1+ \beta _{i-\frac{1}{2}}) \sigma _{i-1}^n+(1-\beta _{i-\frac{1}{2}})\sigma _{i}^n\right] \nonumber \\&-\, \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}}) c_{i}^n+(1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \nonumber \\&\left. -\,\dfrac{1}{4}|v_{i+\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i+\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \Delta x \left[ (1+ \beta _{i+\frac{1}{2}}) \sigma _{i}^n+(1-\beta _{i+\frac{1}{2}})\sigma _{i+1}^n\right] \right) . \end{aligned}$$
(23)

The previous scheme (23) is known to be conservative but not necessarily monotonous [10, 18]. This non-monotonicity may produce numerical solutions with unrealistic oscillations. These oscillations are due to the high variation of the concentration slopes \(\sigma _i ^n\) near jumps of the concentration. A way to measure these oscillations is to use the concept of Total Variation (TV) defined as

$$\begin{aligned} TV\left( \{c^n_i\}_{i=1}^I\right) =\sum _{i=1}^I |c^n_{i}-c^n_{i-1}|. \end{aligned}$$

We are interested in creating numerical schemes with the property of Total Variation Diminishing (TVD), that is \(TV(\{c^n_i\}_{i=1}^I)\ge TV(\{c^{n+1}_i\}_{i=1}^I)\). That property ensures that the scheme will not develop oscillations. Thus, we now introduce a variation of the scheme (23) that guarantee TVD.

To do so, we introduce the concept of flux limiters. In (21), we replace \(\Delta x \left[ (1+\beta _{i-\frac{1}{2}}) \sigma _{i-1}^n +(1-\beta _{i-\frac{1}{2}})\sigma _{i}^n\right] \hbox { by } \phi (r_{i-\frac{1}{2}}^n)(c_i^n-c_{i-1}^n),\) and we obtain

$$\begin{aligned} f^{n-\frac{1}{2}}_{i-\frac{1}{2}}= & {} \dfrac{1}{2}v_{i-\frac{1}{2}} \left[ (1+\beta _{i-\frac{1}{2}})c_{i-1}^n+(1-\beta _{i-\frac{1}{2}})c_{i}^n\right] \nonumber \\&+\, \dfrac{1}{4}|v_{i-\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i-\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \phi (r_{i-\frac{1}{2}}^n)(c_i^n-c_{i-1}^n), \end{aligned}$$
(24)

where \(\phi (r)\) is called flux limiter and \(r_{i-\frac{1}{2}}^n=\dfrac{c_{i-1}^n-c_{i-2}^n}{c_i^n-c_{i-1}^n}\) if \(v_{i-\frac{1}{2}}\ge 0\) or \(=\dfrac{c_{i+1}^n-c_{i}^n}{c_i^n-c_{i-1}^n}\) if \(v_{i-\frac{1}{2}}<0\). In a similar way we can rewrite

$$\begin{aligned} f^{n+\frac{1}{2}}_{i+\frac{1}{2}}= & {} \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}})c_{i}^n+(1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \nonumber \\&+\, \dfrac{1}{4}|v_{i+\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i+\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \phi (r_{i+\frac{1}{2}}^n)(c_{i+1}^n-c_{i}^n), \end{aligned}$$
(25)

where \(r_{i-\frac{1}{2}}^n=\dfrac{c_{i}^n-c_{i-1}^n}{c_{i+1}^n-c_{i}^n}\) if \(v_{i+\frac{1}{2}}\ge 0\) or \(=\dfrac{c_{i+2}^n-c_{i+1}^n}{c_{i+1}^n-c_{i}^n}\) if \(v_{i+\frac{1}{2}}<0\).

Then, scheme (23) can be rewritten as

$$\begin{aligned} c^{n+1}_i= & {} c^n_i+\dfrac{\Delta t}{\Delta x} \left( \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}}) c_{i}^n+(1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \right. \nonumber \\&+ \,\dfrac{1}{4}|v_{i-\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i-\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \phi (r_{i-\frac{1}{2}}^n)(c_i^n-c_{i-1}^n) \nonumber \\&-\, \dfrac{1}{2}v_{i+\frac{1}{2}} \left[ (1+\beta _{i+\frac{1}{2}}) c_{i}^n+(1-\beta _{i+\frac{1}{2}})c_{i+1}^n\right] \nonumber \\&\left. -\, \dfrac{1}{4}|v_{i+\frac{1}{2}}|\left( 1-\left| \dfrac{v_{i+\frac{1}{2}}\Delta t}{\Delta x}\right| \right) \phi (r_{i+\frac{1}{2}}^n)(c_{i+1}^n-c_{i}^n) \right) . \end{aligned}$$
(26)

We note that if in scheme (26) we take:

  • \(\phi (r)=0\), we recover the first order upwind scheme (a scheme producing a high level of artificial diffusion).

  • \(\phi (r)=\dfrac{1}{2}(1+r)\), we recover the Fromm scheme.

  • \(\phi (r)=1\), we recover the Lax–Wendroff scheme.

  • \(\phi (r)=r\), we recover the Beam–Warming scheme.

The first scheme is first order accurate and TVD. The second, third and fourth schemes are second order accurate, but non-TVD.

Let us consider the following nonlinear flux limiters:

  • \(\phi (r)=\)minmod(1, r), we obtain the minmod scheme [28].

  • \(\phi (r)=\max (0,\min (1,2r),\min (2,r))\), we obtain the superbee scheme [28].

  • \(\phi (r)=\max (0,\min ((1+r)/2,2,r))\), we recover the monotonized central scheme [33].

  • \(\phi (r)=(r+|r|)/(1+|r|)\), we recover the Van Leer scheme [32].

  • \(\phi (r)=(r^2+r)/(r^2+1)\), we recover the Van Albada 1 scheme [31].

The five above schemes are TVD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivorra, B., Gomez, S., Glowinski, R. et al. Nonlinear Advection–Diffusion–Reaction Phenomena Involved in the Evolution and Pumping of Oil in Open Sea: Modeling, Numerical Simulation and Validation Considering the Prestige and Oleg Naydenov Oil Spill Cases. J Sci Comput 70, 1078–1104 (2017). https://doi.org/10.1007/s10915-016-0274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0274-x

Keywords

Navigation