Skip to main content
Log in

A Superconvergent HDG Method for the Maxwell Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present and analyze a new hybridizable discontinuous Galerkin (HDG) method for the steady state Maxwell equations. In order to make the problem well-posed, a condition of divergence is imposed on the electric field. Then a Lagrange multiplier p is introduced, and the problem becomes the solution of a mixed curl–curl formulation of the Maxwell’s problem. We use polynomials of degree \(k+1\), k, k to approximate \({{\varvec{u}}},\nabla \times {{\varvec{u}}}\) and p respectively. In contrast, we only use a non-trivial subspace of polynomials of degree \(k+1\) to approximate the numerical tangential trace of the electric field and polynomials of degree \(k+1\) to approximate the numerical trace of the Lagrange multiplier on the faces. On the simplicial meshes, we show that the convergence rates for \(\varvec{u}\) and \(\nabla \times \varvec{u}\) are independent of the Lagrange multiplier p. If we assume the dual operator of the Maxwell equation on the domain has adequate regularity, we show that the convergence rate for \(\varvec{u}\) is \(O(h^{k+2})\). From the point of view of degrees of freedom of the globally coupled unknown: numerical trace, this HDG method achieves superconvergence for the electric field without postprocessing. Finally, we show that the superconvergence of the HDG method is also derived on general polyhedral elements. Numerical results are given to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bonito, A., Guermond, J.-L., Luddens, F.: Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408, 498–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonito, A., Guermond, J.-L., Luddens, F.: An interior penalty method with \(C^0\) finite elements for the approximation of the Maxwell equations in heterogeneous media: convergence analysis with minimal regularity (2014). arXiv:1402.4454

  4. Brenner, S., Li, F., Sung, L.: A locally divergence-free interior penalty method for two-dimensional curl–curl problems. SIAM J. Numer. Anal. 42, 1190–1211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezzi, F., Douglas, J., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X., Wu, H.: An absolutely stable discontinuous Galerkin method for the indefinite time-harmonic Maxwell equations with large wave number. SIAM J. Numer. Anal. 52, 2356–2380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, Z., Gatica, L.F., Sayas, F.-J.: Algorithm 949: MATLAB tools for HDG in Three Dimensions. ACM Trans. Math. Softw., 41, 3, Article 20, (2015)

  12. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82, 247–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42, 434–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lehrenfeld, C.: Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diplomingenieur thesis (2010)

  17. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  18. Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)

  19. Nédélec, J.: Mixed finite elements in \(R^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nédélec, J.: A new family of mixed finite elements in \(R^3\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675–4697 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72, 1179–1214 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. (submitted) arXiv:1312.1407

  25. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66, 346–357 (2016)

  26. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drv067

    MathSciNet  Google Scholar 

  27. Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwells equations. J. Comput. Math. 27, 563–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Huangxin Chen was supported by the NSF of China (Grant No. 11201394) and the Fundamental Research Funds for the Central Universities (Grant No. 20720150005). The work of Weifeng Qiu was partially supported by a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302014). Manuel Solano was partially supported by CONICYT-Chile through the FONDECYT Project No. 1160320 and BASAL Project CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matem’atica (CI\(^2\)MA), Universidad de Concepción, and by CONICYT Project Anillo ACT1118 (ANANUM). As a convention the names of the authors are alphabetically ordered. All authors contributed equally in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Qiu, W., Shi, K. et al. A Superconvergent HDG Method for the Maxwell Equations. J Sci Comput 70, 1010–1029 (2017). https://doi.org/10.1007/s10915-016-0272-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0272-z

Keywords

Mathematics Subject Classification

Navigation