Skip to main content
Log in

On Geodesic Curvature Flow with Level Set Formulation Over Triangulated Surfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The geodesic curvature flow is an important concept in Riemannian geometry. The flow with level set formulation has many applications in image processing, computer vision, material sciences, etc. The existing discretizations on triangulated surfaces are based on either finite volume method or finite element method with piecewise linear function space, which are suitable for vertex-based two-phase problems. The contour (zero level set) in existing methods passes through triangles of the mesh. However, in some graphic applications, such as mesh segmentation (to divide a whole mesh into several sub-meshes without ambiguous triangular stripes), the cutting contour is needed to be along the edges of the mesh. Moreover, multi-phase segmentation by a single level set function is a difficult problem for a long time. In this paper, we try to tackle these two problems. We propose a new discretization which has simpler formulation and more sparse coefficient matrix. We prove the existence and uniqueness, regularization behavior and maximum–minimum principle of our discrete flow. Therein the maximum–minimum principal has not been presented before. Lots of experiments show that, the limit of the flow would be a piecewise constant solution with ’discontinuity set’ to be the closed geodesics of the surface. We therefore propose a constrained discrete geodesic curvature flow, which is also analyzed theoretically. The linear system of the constrained flow can be equivalently reformulated into a much smaller one (especially in the narrow band algorithm), which dramatically reduces the computation cost. Combined with a narrow band algorithm, the constrained flow with topologically correct initializations (easy to be got by simple existing methods or manual inputs) yields a multi-phase segmentation method by a single level set function. We test our two flows in closed curve evolution and multi-region segmentation applications. The numerical experiments are given to demonstrate the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brox, T., Weickert, J.: Level set segmentation with multiple regions. IEEE Trans. Image Process. 15(10), 3213–3218 (2006)

    Article  Google Scholar 

  4. Caselles, V., Catté, F., Coll, F., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of the Fifth International Conference on Computer Vision, 1995, pp. 694–699 (1995)

  6. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces: a geometric three dimensional segmentation approach. Numer. Math. 77(4), 423–451 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Cheng, L.T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chopp, D.L.: Computing minimal surfaces via level set curvature flow. J. Comput. Phys. 106(1), 77–91 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chopp, D.L., Sethian, J.A.: Flow under curvature: singularity formation, minimal surfaces, and geodesics. Exp. Math. 2(4), 235–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davis, H.T., Thomson, K.T.: Linear Algebra and Linear Operators in Engineering: With Applications in Mathematica. Academic Press, New York (2000)

    MATH  Google Scholar 

  12. Dubrovina, A., Rosman, G., Kimmel, R.: Multi-region active contours with a single level set function. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1585–1601 (2015)

    Article  Google Scholar 

  13. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature: I. J. Differ. Geom. 33(3), 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Fu, Z., Jeong, W., Pan, Y., Kirby, R., Whitaker, R.: A fast iterative method for solving the eikonal equation on triangulated surfaces. SIAM J. Sci. Comput. 33(5), 2468–2488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gage, M.: Curve shortening makes convex curves circular. Invent. Math. 76(2), 357–364 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gage, M.: Curve shortening on surfaces. Ann. Sci. École Norm. Sup. 23(2), 229–256 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  19. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26(2), 285–314 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Grayson, M.A.: Shortening embedded curves. Ann. Math. 129(1), 71–111 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  22. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  23. Kimia, B.B., Siddiqi, K.: Geometric heat equation and nonlinear diffusion of shapes and images. In: Proceedings of the 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994 (CVPR’94.), pp. 113–120 (1994)

  24. Kimmel, R.: Intrinsic scale space for images on surfaces: the geodesic curvature flow. In: Romeny, B.H., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space Theory in Computer Vision, pp. 212–223. Springer, Berlin (1997)

    Chapter  Google Scholar 

  25. Lai, R., Shi, Y., Sicotte, N., Toga, A.: Automated corpus callosum extraction via laplace-beltrami nodal parcellation and intrinsic geodesic curvature flows on surfaces. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 2034–2040 (2011)

  26. Lai, Y., Hu, S., Martin, R., Rosin, P.: Fast mesh segmentation using random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 183–191 (2008)

  27. Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75(255), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, L., Chen, D.: Curve shortening flow in a riemannian manifold. 2003. arXiv:math/0312463

  29. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  30. Meyer, M., Desbrun, M., Schröder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III: Mathematics and Visualization, pp. 35–57. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Mikula, K., Sevcovic, D.: Evolution of curves on a surface driven by the geodesic curvature and external force. Appl. Anal. 85(4), 345–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Poole, G., Boullion, T.: A survey on M-matrices. SIAM Rev. 16(16), 419–427 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qian, J., Zhang, Y., Zhao, H.: Fast sweeping methods for eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45(1), 83–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. J. Comput. Vis. 40(3), 187–197 (2000)

    Article  MATH  Google Scholar 

  36. Saye, R.I., Sethian, J.A.: The Voronoi implicit interface method for computing multiphase physics. Proc. Natl. Acad. Sci. 108(49), 19498–19503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Saye, R.I., Sethian, J.A.: Analysis and applications of the Voronoi implicit interface method. J. Comput. Phys. 231(18), 6051–6085 (2012)

    Article  MathSciNet  Google Scholar 

  38. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  39. Spira, G., Kimmel, R.: Geometric curve flows on parametric manifolds. J. Comput. Phys. 223(1), 235–249 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsai, A., Yezzi, A., Willsky, A.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  41. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  42. Wu, C., Tai, X.C.: A level set formulation of geodesic curvature flow on simplicial surfaces. IEEE Trans. Vis. Comput. Graph. 16(4), 647–662 (2010)

    Article  Google Scholar 

  43. Zhang, H., Wu, C., Zhang, J., Deng, J.: Variational mesh denoising using total variation and piecewise constant function space. IEEE Trans. Vis. Comput. Graph. 21(7), 873–886 (2015)

    Article  Google Scholar 

  44. Zhang, J., Wu, C., Cai, J., Zheng, J., Tai, X.C.: Mesh snapping: robust interactive mesh cutting using fast geodesic curvature flow. Comput. Graph. Forum 29(2), 517–526 (2010)

    Article  Google Scholar 

  45. Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF of China (No. 11301289), Fundamental Research Funds for Central Universities [China University of Geosciences (Wuhan)] and Fundamental Research Funds for Central Universities (Nankai University). Chunlin Wu is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, H. & Wu, C. On Geodesic Curvature Flow with Level Set Formulation Over Triangulated Surfaces. J Sci Comput 70, 631–661 (2017). https://doi.org/10.1007/s10915-016-0260-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0260-3

Keywords

Navigation