Skip to main content
Log in

A Priori and a Posteriori Error Analyses of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In a recent work we developed a new hybridizable discontinuous Galerkin (HDG) method for a class of nonlinear Stokes models arising in quasi-Newtonian fluids. The approach there uses the incompressibility condition to eliminate the pressure, sets the gradient of the velocity as an auxiliary unknown, and enriches the original formulation with convenient redundant equations, thus giving rise to an augmented scheme. However, the corresponding analysis, which makes use of a fixed point strategy that depends on a suitably chosen parameter, yields optimal rates of convergence for only two of the six resulting unknowns, whereas the reported numerical results, showing higher orders than predicted, support the conjecture that the a priori error estimates are not sharp. In the present paper, the main features of the aforementioned augmented formulation are maintained, but after introducing slight modifications of the finite element subspaces for the pseudostress and velocity, we are able to significantly improve our previous analyses and results. More precisely, on one hand we realize here that it suffices to choose the stabilization tensor as the identity times the meshsize, and hence neither fixed-point arguments nor related parameters are needed anymore to establish the well-posedness of the discrete scheme, and on the other hand we now prove optimally convergent approximations for all the unknowns. Furthermore, we develop a reliable and efficient residual-based a posteriori error estimator, and propose the associated adaptive algorithm for our HDG approximation of the nonlinear model problem. Finally, several numerical results illustrating the performance of the method, confirming the theoretical properties of the estimator, and showing the expected behaviour of the adaptive refinements, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baranger, J., Najib, K., Sandri, D.: Numerical analysis of a three-fields model for a quasi-Newtonian flow. Comput. Methods Appl. Mech. Eng. 109, 281–292 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  3. Bustinza, R., Gatica, G.N.: A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions. SIAM J. Sci. Comput. 26, 152–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bustinza, R., Gatica, G.N.: A mixed local discontinuous Galerkin for a class of nonlinear problems in fluid mechanics. J. Comput. Phys. 207, 427–456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bustinza, R., Gatica, G.N., Cockburn, B.: An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22–23, 147–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection-diffusion equations. IMA J. Numer. Anal. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Clément, P.: Approximation by finite element functions using local regularisation. ESAIM Math. Model. Numer. Anal. 9, 77–84 (1975)

    MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comp. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp. 78, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueroa, L., Gatica, G.N., Márquez, A.: Augmented mixed finite element methods for the stationary Stokes equations. SIAM J. Sci. Comput. 31, 1082–1119 (2008/09)

  15. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications, SpringerBriefs in Mathematics. Springer, New York (2014)

    Book  Google Scholar 

  16. Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23, 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199, 1064–1079 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gatica, G.N., Márquez, A., Sánchez, M.A.: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Eng. 200, 1619–1636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65, 1270–1308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    MATH  Google Scholar 

  23. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ladyzhenskaya, O.: New equations for the description of the viscous incompressible fluids and solvability in the large for the boundary value problems of them. In: Boundary Value Problems of Mathematical Physics V. Providence, RI: AMS (1970)

  25. Loula, A.F.D., Guerreiro, J.N.C.: Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Eng. 99, 87–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. (2015). doi:10.1093/imanum/drv067

  28. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II. Finite Element Methods (Part 1). North-Holland, Amsterdam (1991)

    Google Scholar 

  29. Sandri, D.: Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. ESAIM Math. Model. Numer. Anal. 27, 131–155 (1993)

    MathSciNet  Google Scholar 

  30. Si, H.: TetGen: A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator v.1.5 User’s manual, Tech. Report 13, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2013

  31. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive-Mesh-Refinement Techniques. Wiley, Chichester (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

This work was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, project Anillo ACT1118 (ANANUM), and the Becas-CONICYT Programme for foreign students; and by Centro de Investigación en Ingeniería Matemática (CI\(^2\)MA), Universidad de Concepción.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatica, G.N., Sequeira, F.A. A Priori and a Posteriori Error Analyses of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows. J Sci Comput 69, 1192–1250 (2016). https://doi.org/10.1007/s10915-016-0233-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0233-6

Keywords

Navigation