Journal of Scientific Computing

, Volume 69, Issue 3, pp 1014–1032 | Cite as

A Two-Stage Low Rank Approach for Calibrationless Dynamic Parallel Magnetic Resonance Image Reconstruction

Article

Abstract

Parallel magnetic resonance imaging (MRI) is an imaging technique by acquiring a reduced amount of data in Fourier domain with multiple receiver coils. To recover the underlying imaging object, one often needs the explicit knowledge of coil sensitivity maps, or some additional fully acquired data blocks called the auto-calibration signals (ACS). In this paper, we show that by exploiting the between-frame redundancy of dynamic parallel MRI data, it is possible to achieve simultaneous coil sensitivity map estimation and image sequence reconstruction. Specially, we introduce a novel two-stage approach for dynamic parallel MRI reconstruction without pre-calibrating the coil sensitivity maps nor additionally acquiring any fully sampled ACS. Numerical experiments demonstrate that, the performance of the proposed approach is better than other state-of-the-art approaches for calibrationless dynamic parallel MRI reconstruction.

Keywords

Dynamic magnetic resonance imaging Sensitivity maps estimation Low rank plus sparsity Forward–backward splitting method 

References

  1. 1.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chandrasekaran, V., Sanghavi, S., Parrilo, P., Willsky, A.S., et al.: Sparse and low-rank matrix decompositions. In: 47th Annual Allerton Conference on Communication, Control, and Computing, 2009. Allerton 2009, pp. 962–967. IEEE (2009)Google Scholar
  4. 4.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model.Simul. 4(4), 1168–1200 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ding, Q., Zan, Y., Huang, Q., Zhang, X.: Dynamic SPECT reconstruction from few projections: a sparsity enforced matrix factorization approach. Inverse Probl 31(2), 025004 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gao, H., Lin, H., Ahn, C.B., Nalcioglu, O.: PRISM: A divide-and-conquer low-rank and sparse decomposition model for dynamic MRI. UCLA CAM Report (2011)Google Scholar
  8. 8.
    Gao, H., Rapacchi, S., Wang, D., Moriarty, J., Meehan, C., Sayre, J., Laub, G., Finn, P., Hu, P.: Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, pp. 2242 (2012)Google Scholar
  9. 9.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRefGoogle Scholar
  10. 10.
    Huang, F., Akao, J., Vijayakumar, S., Duensing, G.R., Limkeman, M.: k–t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn. Reson. Med. 54(5), 1172–1184 (2005)CrossRefGoogle Scholar
  11. 11.
    Kreutz-Delgado, K.: The complex gradient operator and the cr-calculus. University of California, San Diego, version ucsd-ece275cg-s2009v1. 0, 25 june 2009. arXiv:0906.4835
  12. 12.
    Liang, D., DiBella, E.V., Chen, R.-R., Ying, L.: k-t ISD: Dynamic cardiac MR imaging using compressed sensing with iterative support detection. Magn. Reson. Med. 68(1), 41–53 (2012)CrossRefGoogle Scholar
  13. 13.
    Liang, D., Liu, B., Wang, J., Ying, L.: Accelerating SENSE using compressed sensing. Magn. Reson. Med. 62(6), 1574–1584 (2009)CrossRefGoogle Scholar
  14. 14.
    Liang, Z.-P.: Spatiotemporal imaging with partially separable functions. In: Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, 2007. NFSI-ICFBI 2007, pp. 181–182. IEEE (2007)Google Scholar
  15. 15.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  16. 16.
    Lustig, M., Pauly, J.M.: SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)Google Scholar
  17. 17.
    Otazo, R., Candès, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)CrossRefGoogle Scholar
  18. 18.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962 (1999)CrossRefGoogle Scholar
  19. 19.
    Shen, Z., Toh, K.-C., Yun, S.: An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci. 4(2), 573–596 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shin, P.J., Larson, P.E., Ohliger, M.A., Elad, M., Pauly, J.M., Vigneron, D.B., Lustig, M.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Reson. Med. 72(4), 959–970 (2014)CrossRefGoogle Scholar
  21. 21.
    Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38(4), 591–603 (1997)CrossRefGoogle Scholar
  22. 22.
    Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala, S.S., Lustig, M.: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, J., Kluge, T., Nittka, M., Jellus, V., Kuhn, B., Kiefer, B.: Using reference lines to improve the SNR of mSENSE. In: Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, p. 2392 (2002)Google Scholar
  24. 24.
    Zhao, T., Hu, X.: Iterative GRAPPA (iGRAPPA) for improved parallel imaging reconstruction. Magn. Reson. Med. 59(4), 903–907 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Biomedical Engineering and Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Institute of Natural Sciences and School of Mathematical Sciences and MOE-LSCShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations