Skip to main content
Log in

A Posteriori Error Analysis of Two-Step Backward Differentiation Formula Finite Element Approximation for Parabolic Interface Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper studies a residual-based a posteriori error estimates for linear parabolic interface problems in a bounded convex polygonal domain in \(\mathbb {R}^2\). We use the standard linear finite element spaces in space which are allowed to change in time and the two-step backward differentiation formula (BDF-2) approximation at equidistant time step is used for the time discretizations. The essential ingredients in the error analysis are the continuous piecewise quadratic space–time BDF-2 reconstruction and Scott–Zhang interpolation estimates. Optimal order in time and an almost optimal order in space error estimates are derived in the \(L^{\infty }(L^{2})\)-norm using only energy method. The interfaces are assumed to be of arbitrary shape but are smooth for our purpose. Numerical experiments are performed to validate the asymptotic behaviour of the derived error estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces vol. 140 of Pure and Applied Mathematics, 2nd edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  2. Akrivis, G., Chatzipantelidis, P.: A posteriori error estimates for the two-step backward differentiation formula method for parabolic equations. SIAM J. Numer. Anal. 48, 109–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akrivis, G., Makridakis, C., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bänsch, E., Karakatsani, F., Makridakis, C.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, J.: A second order backward difference method with variable steps for a parabolic problem. BIT 38, 644–662 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85, 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berrone, S.: Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients. M2AN Math. Model. Numer. Anal. 40, 991–1021 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomée, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52, 339–367 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  10. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49, 1761–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47, 2132–2156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ladyženskaja, O.A., Solonnikov, V.A., Ural\(^{\prime }\)ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society (1968)

  14. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Le Roux, M.-N.: Semidiscretization in time for parabolic problems. Math. Comput. 33, 919–931 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lumer, G., Weis, L.: Evolution Equations and Their Applications in Physical and Life sciences, vol. 215 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (2001)

  17. Luskin, M., Rannacher, R.: On the smoothing property of the Crank–Nicolson scheme. Appl. Anal. 14, 117–135 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive-type memory term. J. Aust. Math. Soc. Ser. B 35, 23–70 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reusken, A., Nguyen, T.H.: Nitsche’s method for a transport problem in two-phase incompressible flows. J. Fourier Anal. Appl. 15, 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sen Gupta, J.: A Posteriori Error Analysis of Finite Elemet Method For Parabolic InterfaceProblems. PhD Thesis, Indian Institute of Technology, Guwahati, India (2015)

  23. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  24. Tu, C., Peskin, C.S.: Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput. 13, 1361–1376 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank both the referees for their valuable comments and suggestions which improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajen K. Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen Gupta, J., Sinha, R.K., Reddy, G.M.M. et al. A Posteriori Error Analysis of Two-Step Backward Differentiation Formula Finite Element Approximation for Parabolic Interface Problems. J Sci Comput 69, 406–429 (2016). https://doi.org/10.1007/s10915-016-0203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0203-z

Keywords

Navigation