Advertisement

Journal of Scientific Computing

, Volume 69, Issue 1, pp 430–459 | Cite as

Error Analysis of a B-Spline Based Finite-Element Method for Modeling Wind-Driven Ocean Circulation

  • Nella Rotundo
  • Tae-Yeon Kim
  • Wen Jiang
  • Luca Heltai
  • Eliot FriedEmail author
Article

Abstract

We present the results of an error analysis of a B-spline based finite-element approximation of the stream-function formulation of the large scale wind-driven ocean circulation. In particular, we derive optimal error estimates for h-refinement using a Nitsche-type variational formulations of the two simplied linear models of the stationary quasigeostrophic equations, namely the Stommel and Stommel–Munk models. Numerical results obtained from simulations performed on rectangular and embedded geometries confirm the error analysis.

Keywords

Quasigeostrophic equations Stream function Vorticity  Nitsche’s method Optimal convergence 

Mathematics Subject Classification

65M15 65D07 74S05 

Notes

Acknowledgments

The work has been partially supported by (N.R.) ERC-2010-AdG No. 267802 Analysis of Multiscale Systems Driven by Functionals, and by (L.H.) project OpenViewSHIP, “Sviluppo di un ecosistema computazionale per la progettazione idrodinamica del sistema elica-carena”, supported by Regione FVG - PAR FSC 2007–2013, Fondo per lo Sviluppo e la Coesione and by the project “TRIM – Tecnologia e Ricerca Industriale per la Mobilità Marina”, CTN01-00176-163601, supported by MIUR, the Italian Ministry of Instruction, University and Research. E.F. gratefully acknowledges support from the Okinawa Institute of Science and Technology Graduate University with subsidy funding from the Cabinet Office, Government of Japan.

References

  1. 1.
    Vallis, G .K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  2. 2.
    Cushman-Roisin, B., Beckers, J .M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Cambridge (2011)zbMATHGoogle Scholar
  3. 3.
    Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean, volume 9 of Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2003)Google Scholar
  4. 4.
    Majda, A., Wang, X.: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    McWilliams, J .C.: Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  6. 6.
    Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1992)zbMATHGoogle Scholar
  7. 7.
    Fix, G.J.: Finite element models for ocean circulation problems. SIAM J. Appl. Math. 29(3), 371–387 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Foster, E.L., Iliescu, T., Wang, Z.: A finite element discretization of the streamfunction formulation of the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 261–262, 105–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, T.-Y., Iliescu, T., Fried, E.: B-spline based finite-element method for the stationary quasi-geostrophic equations of the ocean. Comput. Methods Appl. Mech. Eng. 286, 168–191 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Heltai, L., Arroyo, M., DeSimone, A.: Nonsingular isogeometric boundary element method for stokes flows in 3D. Comput. Methods Appl. Mech. Eng. 268, 514–539 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Manzoni, A., Salmoiraghi, F., Heltai, L.: Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils. Comput. Methods Appl. Mech. Eng. 284, 1147–1180 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bazilevs, Y., Hughes, T.J.R.: Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput. Fluids 36(1), 12–26 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nitsche, J.: Uber ein variationsprinzip zur lösung von dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. In: Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol.  36, pp. 9–15. Springer, Berlin (1971)Google Scholar
  15. 15.
    Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83(7), 877–898 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kim, T.-Y., Dolbow, J.E.: An edge-bubble stabilized finite element method for fourth-order parabolic problems. Finite Elem. Anal. Des. 45(8), 485–494 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kim, T.-Y., Dolbow, J., Fried, E.: A numerical method for a second-gradient theory of incompressible fluid flow. J. Comput. Phys. 223(2), 551–570 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kim, Tae-Yeon, Dolbow, John E., Fried, Eliot: Numerical study of the grain-size dependent Young’s modulus and Poisson’s ratio of bulk nanocrystalline materials. Int. J. Solids Struct. 49(26), 3942–3952 (2012)CrossRefGoogle Scholar
  19. 19.
    Kim, T.-Y., Puntel, E., Fried, E.: Numerical study of the wrinkling of a stretched thin sheet. Int. J. Solids Struct. 49(5), 771–782 (2012)CrossRefGoogle Scholar
  20. 20.
    Fernández-Méndez, S., Huerta, A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 193(12), 1257–1275 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Int. J. Numer. Methods Eng. 78(2), 229–252 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kamensky, D., Hsu, M.-C., Schillinger, Dk, Evans, J.A., Aggarwal, A., Bazilevs, Y., Sacks, M.S., Hughes, T.J.R.: An immersogeometric variational framework for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 284, 1005–1053 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jiang, W., Annavarapu, C., Dolbow, J.E., Harari, I.: A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int. J. Numer. Methods Eng. 104(7), 676–696 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 197(25–28), 2210–2231 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Cottrell, J .A., Hughes, T .J .R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  27. 27.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  28. 28.
    Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numerische Mathematik 118(2), 271–305 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(07), 1031–1090 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Brenner, S .C., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2007)zbMATHGoogle Scholar
  31. 31.
    Ciarlet, P .G.: The Finite Element Method for Elliptic Problems. SIAM, Pathum Wan (2002)CrossRefzbMATHGoogle Scholar
  32. 32.
    Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191(34), 3669–3750 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bazilevs, Y., Michler, C., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199(13), 780–790 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bramble, J.H., Dupont, T., Thomée, Vidar: Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections. Math. Comput. 26(120), 869–879 (1972)zbMATHGoogle Scholar
  36. 36.
    Dréau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199(29–32), 1922–1936 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ruess, M., Schillinger, D., Bazilevs, Y., Varduhn, V., Rank, E.: Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95(10), 811–846 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Myers, P.G., Weaver, A.J.: A diagnostic barotropic finite-element ocean circulation model. J. Atmos. Ocean. Technol. 12(3), 511–526 (1995)CrossRefGoogle Scholar
  39. 39.
    Cascon, J.M., Garcia, G.C., Rodriguez, R.: A priori and a posteriori error analysis for a large-scale ocean circulation finite element model. Comput. Methods Appl. Mech. Eng. 192(51), 5305–5327 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nella Rotundo
    • 1
  • Tae-Yeon Kim
    • 2
  • Wen Jiang
    • 3
  • Luca Heltai
    • 4
  • Eliot Fried
    • 5
    Email author
  1. 1.Weierstraß-InstitutBerlinGermany
  2. 2.Civil Infrastructure and Environmental EngineeringKhalifa UniversityAbu DhabiUAE
  3. 3.Fuels Modeling and SimulationIdaho National LaboratoryIdaho FallsUSA
  4. 4.Scuola Internazionale Superiore di Studi AvanzatiTriesteItaly
  5. 5.Mathematical Soft Matter UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan

Personalised recommendations