Journal of Scientific Computing

, Volume 69, Issue 1, pp 244–273 | Cite as

Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model

  • Helene Dallmann
  • Daniel Arndt


We consider conforming finite element approximations for the time-dependent Oberbeck–Boussinesq model with inf-sup stable pairs for velocity and pressure and use a stabilization of the incompressibility constraint. In case of dominant convection, a local projection stabilization method in streamline direction is considered both for velocity and temperature. For the arising nonlinear semi-discrete problem, a stability and convergence analysis is given that does not rely on a mesh width restriction. Numerical experiments validate a suitable parameter choice within the bounds of the theoretical results.


Oberbeck–Boussinesq model Navier–Stokes equations Stabilized finite elements Local projection stabilization Grad-div stabilization Non-isothermal flow 

Mathematics Subject Classification

65M12 65M60 76D05 


  1. 1.
    Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars, Paris (1903)zbMATHGoogle Scholar
  2. 2.
    Oberbeck, A.: Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Annalen der Physik 243(6), 271–292 (1879)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gelhard, T., Lube, G., Olshanskii, M., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177(2), 243–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Case, M., Ervin, V., Linke, A., Rebholz, L.: A connection between Scott–Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations. SIAM J. Numer. Anal. 49(4), 1461–1481 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection–Diffusion–Reaction and Flow Problems, vol. 24. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Lube, G., Rapin, G.: Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16(07), 949–966 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braack, M., Burman, E., John, V., Lube, G.: Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196(4), 853–866 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM Math. Model. Numer. Anal. 41(4), 713–742 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Matthies, G., Tobiska, L.: Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem. IMA J. Numer. Anal. 35(1), 239–269 (2015)Google Scholar
  10. 10.
    Dallmann, H., Arndt, D., Lube, G.: Local projection stabilization for the Oseen problem. IMA J. Numer. Anal. (2015)Google Scholar
  11. 11.
    Arndt, D., Dallmann, H., Lube, G.: Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer. Methods Partial Differ. Equ. 31(4), 1224–1250 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2015)Google Scholar
  13. 13.
    Boland, J., Layton, W.: An analysis of the finite element method for natural convection problems. Numer. Methods Partial Differ. Equ. 6(2), 115–126 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11(5–6), 449–483 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dorok, O., Grambow, W., Tobiska, L.: Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier–Stokes Equations. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Codina, R., Principe, J., Ávila, M.: Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling. Int. J. Numer. Methods Heat Fluid Flow 20(5), 492–516 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Loewe, J., Lube, G.: A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free convection problems. Math. Models Methods Appl. Sci. 22(02), 1150011-1–1150011-31 (2012)Google Scholar
  18. 18.
    Girault, V., Scott, L.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40(1), 1–19 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ayuso, B., García-Archilla, B., Novo, J.: The postprocessed mixed finite-element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1091–1111 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    García-Archilla, B., Titi, E.S.: Postprocessing the galerkin method: the finite-element case. SIAM J. Numer. Anal. 37(2), 470–499 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dallmann, H.: Finite Element Methods with Local Projection Stabilization for Thermally Coupled Incompressible Flow. PhD thesis, University of Göttingen (2015)Google Scholar
  22. 22.
    Braack, M., Lube, G., Röhe, L.: Divergence preserving interpolation on anisotropic quadrilateral meshes. Comput. Methods Appl. Math. 12(2), 123–138 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jenkins, E. W., John, V., Linke, A., Rebholz, L. G. On the parameter choice in grad-div stabilization for the Stokes equations. Adv. Comput. Math. 40(2), 491–516 (2014)Google Scholar
  24. 24.
    Timmermans, L., Minev, P., Van De Vosse, F.: An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Methods Fluids 22(7), 673–688 (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Guermond, J.-L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73(248), 1719–1737 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Arndt, D., Dallmann, H.: Error Estimates for the Fully Discretized Incompressible Navier–Stokes Problem with LPS Stabilization, Technical Report, Institute of Numerical and Applied Mathematics, Georg-August-University of Göttingen (2015)Google Scholar
  27. 27.
    Arndt, D., Dallmann, H., Lube, G.: Quasi-Optimal Error Estimates for the Fully Discretized Stabilized Incompressible Navier–Stokes Problem. ESAIM Math. Model. Numer. Anal. (2015) (under review)Google Scholar
  28. 28.
    Wagner, S., Shishkina, O., Wagner, C.: Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697, 336–366 (2012)CrossRefzbMATHGoogle Scholar
  29. 29.
    Grossmann, S., Lohse, D.: Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bailon-Cuba, J., Emran, M., Schumacher, J.: Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152–173 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsGeorg-August University of GöttingenGöttingenGermany

Personalised recommendations