Skip to main content
Log in

Source Term Discretization Effects on the Steady-State Accuracy of Finite Volume Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Source terms often arise in Computational Fluid Dynamics to describe a variety of physical phenomena, including turbulence, chemical reactions, and certain methods used for code verification, such as the method of manufactured solutions. While much has already been published on the treatment of source terms, here we follow an uncommon approach, designing compatible source term discretizations in terms of spatial truncation error for finite volume schemes in multiple dimensions. In this work we examine the effect of source term discretization on three finite volume flux schemes applied to steady flows: constant reconstruction, linear reconstruction, and a recently published third-order flux correction method. Three source term discretization schemes are considered, referred to as point, Galerkin, and corrected. The corrected source discretization is a new method that extends our previous work on flux correction to equations with source terms. In all cases, computational grid refinement studies confirm the compatibility (or lack thereof) of various flux-source combinations predicted through detailed truncation error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. LeVeque, R.: Numerical Methods for Conservation Laws. Birkhauser, Basel (1990)

    Book  MATH  Google Scholar 

  2. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, of Applied Mathematical Sciences. Springer, New York (1996)

    Book  MATH  Google Scholar 

  3. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Approach. Springer, New York (1997)

    Book  MATH  Google Scholar 

  4. Murillo, J., Garcia-Navarro, P.: Weak solutions for partial differential equations with source terms: application to the shallow water equations. J. Comput. Phys. 229, 4327–4368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dumbser, M., Enaux, C., Toro, E.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227(8), 3971–4001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Roache, P.: Verification of codes and calculations. J. Comput. Phys. 36(0001–1452), 696–702 (1998)

    Google Scholar 

  7. Roache, P.: Code verification by the method of manufactured solutions. J. Comput. Phys. 124, 4–10 (2002)

    Google Scholar 

  8. Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of Computational Fluid Dynamics. Springer, New York (2001)

    Book  MATH  Google Scholar 

  9. Oberkampf, W., Roy, C.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  10. Katz, A., Sankaran, V.: An efficient correction method to obtain a formally third-order accurate flow solver for node-centered unstructured grids. J. Sci. Comput. 51, 375–393 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    Article  MATH  Google Scholar 

  12. Salari, K., Knupp, P.: Code verification by the method of manufactured solutions. Technical Report SAND2000-1444, Sandia National Laboratories (2000)

  13. Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131–156 (2005)

    Article  MATH  Google Scholar 

  14. Eca, L., Hoekstra, M., Hay, A., Pelletier, D.: A manufactured solution for a two-dimensional steady wall-bounded incompressible turbulent flow. J. Comput. Phys. 21, 175–188 (2007)

    MATH  Google Scholar 

  15. Folkner, D., Katz, A., Sankaran, V.: Design and verification methodology of boundary conditions for finite volume schemes. J. Comput. Phys. 96, 264–275 (2014)

    MathSciNet  Google Scholar 

  16. Katz, A., Sankaran, V.: Mesh quality effects on the accuracy of Euler and Navier-Stokes solutions on unstructured meshes. J. Comput. Phys. 230(20), 7670–7686 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, A., Sankaran, V.: High aspect ratio grid effects on the accuracy of Navier-Stokes solutions on unstructured meshes. J. Comput. Phys. 65, 67–79 (2012)

    MathSciNet  Google Scholar 

  18. Work, D., Tong, O., Workman, R., Katz, A., Wissink, A.: Strand grid solution procedures for sharp corners. J. Comput. Phys. 52(7), 1528–1541 (2014)

    Google Scholar 

  19. Jameson, A.: Advances in bringing high-order methods to practical applications in computational fluid dynamics. AIAA paper 2011–3226, AIAA 20th Computational Fluid Dynamics Conference, Honolulu, HI, (2011)

  20. Toro, E., Titarev, V.: ADER schemes for scalar hyperbolic conservation laws with source terms in three space dimensions. J. Comput. Phys. 202(1), 196–215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Toro, E., Titarev, V.: Derivative Riemann solvers for systems of conservation laws and ader methods. J. Comput. Phys. 212(1), 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vazquez-Cendon, M.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497–526 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. J. Comput. Phys. 23(8), 1049 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Bermudez, A., Dervieux, A., Desideri, J.A., Vazquez, M.E.: Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput. Methods Appl. Mech. Eng. 155(49), 49–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  26. Liang, Q.H., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32, 873–884 (2009)

    Article  Google Scholar 

  27. Rogers, B.D., Borthwick, A.G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 168, 422–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toro, E.F.: Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley, New York (2001)

    MATH  Google Scholar 

  29. Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Barth, T.J.: Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. AIAA paper 1991–0721, AIAA 29th ASM, Reno, (1991)

  31. Katz, A., Work, D.: High-order flux correction/finite difference schemes for strand grids. J. Comput. Phys. 282, 360–380 (2015)

    Article  MathSciNet  Google Scholar 

  32. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Diskin, B., Thomas, J.: Comparison of node-centered and cell-centered unstructured finite-volume discretizations: Inviscid fluxes. AIAA paper 2010–1079, AIAA 48th Aerospace Sciences Meeting, Orlando, FL (2010)

  34. Jameson, A., Baker, T., Weatherill, N.: Calculation of inviscid transonic flow over a complete aircraft. AIAA paper 86–0103, AIAA 24th Aerospace Sciences Meeting, Reno, (1986)

  35. Barth, T.J.: A 3-D upwind Euler solver for unstructured meshes. AIAA paper 1991–1548, AIAA 29th ASM, Reno, (1991)

  36. Pincock, B., Katz, A.: High-order flux correction for viscous flows on arbitrary unstructured grids. J. Sci. Comput. 61(2), 454–476 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Delanaye, M., Liu, Y.: Quadratic reconstruction finite volume schemes on 3D arbitrary unstructured polyhedral grids. AIAA paper 1995–3259, AIAA 14th CFD Conference, Norfolk, (1999)

  38. Delanaye, M.: Polynomial reconstruction finite volume schemes for the compressible euler and navier-stokes equations on unstructured and adaptive grids. Phd thesis, Universite de liege, (1998)

  39. Caughey, D., Jameson, A.: Fast preconditioned multigrid solution of the Euler and Navier-Stokes equations for steady, compressible flows. Int. J. Numer. Meth. Fluids 43, 537–553 (2003)

    Article  MATH  Google Scholar 

  40. Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 2. The Ronald Press Company, New York (1954)

    MATH  Google Scholar 

  41. Chiocchia, G.: Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, (1985)

Download references

Acknowledgments

Development was performed with the support of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office and by the Office of Naval Research Sea-Based Aviation program directed by Dr. Judah Milgram and Mr. John Kinzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorne, J., Katz, A. Source Term Discretization Effects on the Steady-State Accuracy of Finite Volume Schemes. J Sci Comput 69, 146–169 (2016). https://doi.org/10.1007/s10915-016-0186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0186-9

Keywords

Navigation