Advertisement

Journal of Scientific Computing

, Volume 68, Issue 3, pp 1124–1141 | Cite as

Fast Computing of Conformal Mapping and Its Inverse of Bounded Multiply Connected Regions onto Second, Third and Fourth Categories of Koebe’s Canonical Slit Regions

  • Ali W. K. SangawiEmail author
  • Ali H. M. Murid
  • Lee Khiy Wei
Article

Abstract

This paper presents a boundary integral method with the adjoint generalized Neumann kernel for conformal mapping of a bounded multiply connected region onto a disk with spiral slits region \(\varOmega _1\). This extends the methods that have recently been given for mappings onto annulus with spiral slits region \(\varOmega _2\), spiral slits region \(\varOmega _3\), and straight slits region \(\varOmega _4\) but with different right-hand sides. This paper also presents a fast implementation of the boundary integral equation method for computing numerical conformal mapping of bounded multiply connected region onto all four regions \(\varOmega _1\), \(\varOmega _2\), \(\varOmega _3\), and \(\varOmega _4\) as well as their inverses. The integral equations are solved numerically using combination of Nyström method, GMRES method, and fast multipole method (FMM). The complexity of this new algorithm is \(O((m + 1)n)\), where \(m+1\) is the multiplicity of the multiply connected region and n is the number of nodes on each boundary component. Previous algorithms require \(O((m+1)^3 n^3)\) operations. The algorithm is tested on several test regions with complex geometries and high connectivities. The numerical results illustrate the efficiency of the proposed method.

Keywords

Numerical conformal mapping Boundary integral equations  Multiply connected regions Generalized Neumann kernel GMRES FMM 

Mathematics Subject Classifications

30C30 65E05 

Notes

Acknowledgments

This work was supported in part by the Malaysian Ministry of Higher Education (MOHE) through the Research Management Centre (RMC), Universiti Teknologi Malaysia, UTM-CIAM (Vote: R.J130000.7809.4F637), and the Ministry of Higher Education through Department of Mathematics School of Science, University of Sulaimani. These supports are gratefully acknowledged. We wish to thank an anonymous referee for valuable comments and suggestions on the manuscript which improve the presentation of the paper.

References

  1. 1.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  2. 2.
    Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations. Society for Industry and Applied Mathematics, Philadephia (1976)zbMATHGoogle Scholar
  3. 3.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)zbMATHGoogle Scholar
  4. 4.
    Greengard, L., Gimbutas, Z.: FMMLIB2D, a MATLAB Toolbox for Fast Multipole Method in Two Dimensions, Version 1.2. http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html (2012)
  5. 5.
    Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227(5), 2899–2921 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58, 145–161 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Koebe, P.: Abhandlungen zur Theorie der konfermen Abbildung. IV. Abbildung mehrfach zusammenhängender schlicter Bereiche auf Schlitzcereiche (in German). Acta Math. 41, 305–344 (1916)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nasser, M.M.S., Murid, A.H.M., Zamzamir, Z.: A boundary integral method for the Riemann–Hilbert problem in domains with corners. Complex Var. Eliptic Equ. 53(2), 989–1008 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nasser, M.M.S.: A boundary integral equation for conformal mapping of bounded multiply connected regions. Comput. Methods Func. Theory 9(1), 127–143 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nasser, M.M.S.: Numerical conformal mapping via boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31, 1695–1715 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nasser, M.M.S., Murid, A.H.M., Ismail, M., Alejaily, E.M.A.: Boundary integral equation with the generalized Neumann kernel for Laplace’s equation in multiply connected regions. Appl. Math. Comput. 217, 4710–4727 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe’s canonical slit domains. J. Math. Anal. Appl. 382, 47–56 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nasser, M.M.S., Al-Shihri, Fayzah A.A.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nehari, Z.: Conformal Mapping. Dover Publication, New York (1952)zbMATHGoogle Scholar
  15. 15.
    Sangawi, A.W.K., Murid, A.H.M., Nasser, M.M.S.: Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits. Appl. Math. Comput. 218(5), 2055–2068 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sangawi, A.W.K., Murid, A.H.M.: Annulus with spiral sSlits map and its inverse of bounded multiply connected regions. IJSER 4(10), 1447–1454 (2013)Google Scholar
  17. 17.
    Sangawi, A.W.K.: Spiral slits map and its inverse of bounded multiply connected regions. Appl. Math. Comput. 228, 520–530 (2014)MathSciNetGoogle Scholar
  18. 18.
    Sangawi, A.W.K.: Straight slits map and its inverse of bounded multiply connected regions. Adv. Comput. Math. (2014). doi: 10.1007/s10444-014-9368-x
  19. 19.
    Wegmann, R., Nasser, M.M.S.: The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions. J. Comput. Appl. Math. 214, 36–57 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wen, G.C.: Conformal Mapping and Boundary Value problems, English translation of Chinese edition 1984, American mathematical Society, providence (1992)Google Scholar
  21. 21.
    Yunus, A.A.M., Murid, A.H.M., Nasser, M.M.S.: Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 470(2162), 20130514 (2014). doi: 10.1098/rspa.2013.0514 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ali W. K. Sangawi
    • 1
    • 2
    Email author
  • Ali H. M. Murid
    • 3
    • 4
  • Lee Khiy Wei
    • 3
    • 4
  1. 1.Department of Mathematics, Faculty of Science and Science Education, School of ScienceUniversity of SulaimaniSulaimaniIraq
  2. 2.Department of Computer, College of Basic EducationCharmo UniversityChamchamal SulaimaniIraq
  3. 3.Department of Mathematics, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  4. 4.UTM Centre for Industrial and Applied MathematicsIbnu Sina Institute for Scientific and Industrial ResearchJohor BahruMalaysia

Personalised recommendations