Skip to main content

An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations

Abstract

In this work we construct a high-order, single-stage, single-step positivity-preserving method for the compressible Euler equations. Space is discretized with the finite difference weighted essentially non-oscillatory method. Time is discretized through a Lax–Wendroff procedure that is constructed from the Picard integral formulation of the partial differential equation. The method can be viewed as a modified flux approach, where a linear combination of a low- and high-order flux defines the numerical flux used for a single-step update. The coefficients of the linear combination are constructed by solving a simple optimization problem at each time step. The high-order flux itself is constructed through the use of Taylor series and the Cauchy–Kowalewski procedure that incorporates higher-order terms. Numerical results in one- and two-dimensions are presented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure. Appl. Math. 5, 243–255 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Godunov, S.K.: Difference method of computation of shock waves. Uspehi Mat. Nauk (N.S.) 12(1), 176–177 (1957)

    MathSciNet  Google Scholar 

  9. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comput. Phys. 71(2), 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiong, T., Qiu, J.-M., Xu, Z.: Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. arXiv:1403.0594 (2014)

  13. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)

    Article  MathSciNet  Google Scholar 

  14. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten, A., Zwas, G.: Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9, 568–583 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IIIOne-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rodionov, A.V.: Methods of increasing the accuracy in Godunov’s scheme. USSR Comput. Math. Math. Phys. 27(6), 164–169 (1987)

    Article  MATH  Google Scholar 

  22. Bell, J.B., Colella, P., Trangenstein, J.A.: Higher order Godunov methods for general systems of hyperbolic conservation laws. J. Comput. Phys. 82(2), 362–397 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Men’shov, I.S.: Increasing the order of approximation of Godunov’s scheme using solutions of the generalized Riemann problem. USSR Comput. Math. Math. Phys. 30(5), 54–65 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods, pp. 907–940. Springer, Berlin (2001)

  25. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toro, E.F., Titarev, V.A.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7), 2480–2516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)

    Article  MathSciNet  Google Scholar 

  32. Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92(2), 273–295 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Estivalezes, J.-L., Villedieu, P.: A new second order positivity preserving kinetic schemes for the compressible euler equations. In: Deshpande, S.M., Desai, S.S., Narasimha, R. (eds.) Fourteenth International Conference on Numerical Methods in Fluid Dynamics, vol. 453 of Lecture Notes in Physics, pp. 96–100. Springer, Berlin (1995)

  38. Estivalezes, J.-L., Villedieu, P.: High-order positivity-preserving kinetic schemes for the compressible Euler equations. SIAM J. Numer. Anal. 33(5), 2050–2067 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, T., Xu, K.: Gas-kinetic schemes for the compressible Euler equations: positivity-preserving analysis. Z. Angew. Math. Phys. 50(2), 258–281 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Dubroca, B.: Solveur de Roe positivement conservatif. C. R. Acad. Sci. Paris Sér. I Math. 329(9), 827–832 (1999)

    Article  MathSciNet  Google Scholar 

  42. Tang, H.-Z., Xu, K.: Positivity-preserving analysis of explicit and implicit Lax–Friedrichs schemes for compressible Euler equations. J. Sci. Comput. 15(1), 19–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gallice, Gérard: Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94(4), 673–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kontzialis, K., Ekaterinaris, J.A.: High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks. Comput. Fluids 71, 98–112 (2013)

    Article  MathSciNet  Google Scholar 

  48. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Güçlü, Y., Christlieb, A.J., Hitchon, W.N.G.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)

    Article  MathSciNet  Google Scholar 

  51. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    Article  MATH  Google Scholar 

  52. Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport II: generalizations of the method. J. Comput. Phys. 18(3), 248–283 (1975)

    Article  MATH  Google Scholar 

  53. Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20(4), 397–431 (1976)

    Article  MATH  Google Scholar 

  54. Book, D.L., Boris, J.P., Zalesak, S.T.: Flux-corrected transport. In: Book, D. L. (ed.) Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, pp. 29–55. Springer, New York (1981)

  55. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83(289), 2213–2238 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)

    Article  MathSciNet  Google Scholar 

  58. Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted eno schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Seal, D.C.: FINESS software, 2015. https://bitbucket.org/dseal/finess

  60. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, Massachusetts (1959)

    MATH  Google Scholar 

  61. Seal, D.C., Güçlü, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60(1), 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer for the helpful suggestions to further improve this work. This work has been supported in part by Air Force Office of Scientific Research Grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, and by National Science Foundation Grant Numbers DMS-1115709 and DMS-1316662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Seal.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seal, D.C., Tang, Q., Xu, Z. et al. An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations. J Sci Comput 68, 171–190 (2016). https://doi.org/10.1007/s10915-015-0134-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0134-0

Keywords

  • Hyperbolic conservation laws
  • Lax–Wendroff
  • Weighted essentially non-oscillatory
  • Positivity-preserving