Abstract
In this work we construct a high-order, single-stage, single-step positivity-preserving method for the compressible Euler equations. Space is discretized with the finite difference weighted essentially non-oscillatory method. Time is discretized through a Lax–Wendroff procedure that is constructed from the Picard integral formulation of the partial differential equation. The method can be viewed as a modified flux approach, where a linear combination of a low- and high-order flux defines the numerical flux used for a single-step update. The coefficients of the linear combination are constructed by solving a simple optimization problem at each time step. The high-order flux itself is constructed through the use of Taylor series and the Cauchy–Kowalewski procedure that incorporates higher-order terms. Numerical results in one- and two-dimensions are presented.
This is a preview of subscription content, access via your institution.




References
Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)
Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)
Harten, A.: The artificial compression method for computation of shocks and contact discontinuities. III. Self-adjusting hybrid schemes. Math. Comput. 32(142), 363–389 (1978)
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)
Von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)
Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure. Appl. Math. 5, 243–255 (1952)
Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)
Godunov, S.K.: Difference method of computation of shock waves. Uspehi Mat. Nauk (N.S.) 12(1), 176–177 (1957)
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comput. Phys. 71(2), 231–303 (1987)
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)
Xiong, T., Qiu, J.-M., Xu, Z.: Parametrized positivity preserving flux limiters for the high order finite difference WENO scheme solving compressible Euler equations. arXiv:1403.0594 (2014)
Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes. J. Comput. Phys. 281, 334–351 (2015)
Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011)
Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)
Christlieb, A.J., Güçlü, Y., Seal, D.C.: The Picard integral formulation of weighted essentially nonoscillatory schemes. SIAM J. Numer. Anal. 53(4), 1833–1856 (2015)
Harten, A., Zwas, G.: Self-adjusting hybrid schemes for shock computations. J. Comput. Phys. 9, 568–583 (1972)
Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)
Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)
Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IIIOne-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)
Rodionov, A.V.: Methods of increasing the accuracy in Godunov’s scheme. USSR Comput. Math. Math. Phys. 27(6), 164–169 (1987)
Bell, J.B., Colella, P., Trangenstein, J.A.: Higher order Godunov methods for general systems of hyperbolic conservation laws. J. Comput. Phys. 82(2), 362–397 (1989)
Men’shov, I.S.: Increasing the order of approximation of Godunov’s scheme using solutions of the generalized Riemann problem. USSR Comput. Math. Math. Phys. 30(5), 54–65 (1990)
Toro, E.F., Millington, R.C., Nejad, L.A.M.: Towards very high order Godunov schemes. In: Toro, E.F. (ed.) Godunov Methods, pp. 907–940. Springer, Berlin (2001)
Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection-reaction equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 271–281 (2002)
Toro, E.F., Titarev, V.A.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1–4), 609–618 (2002)
Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003)
Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)
Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D.: Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7), 2480–2516 (2009)
Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)
Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257–286 (2013)
Qiu, J., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194(42–44), 4528–4543 (2005)
Dumbser, M., Munz, C.-D.: Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1–3), 215–230 (2006)
Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.-D.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232–4247 (2011)
Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax–Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228(23), 8872–8891 (2009)
Einfeldt, B., Munz, C.-D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92(2), 273–295 (1991)
Estivalezes, J.-L., Villedieu, P.: A new second order positivity preserving kinetic schemes for the compressible euler equations. In: Deshpande, S.M., Desai, S.S., Narasimha, R. (eds.) Fourteenth International Conference on Numerical Methods in Fluid Dynamics, vol. 453 of Lecture Notes in Physics, pp. 96–100. Springer, Berlin (1995)
Estivalezes, J.-L., Villedieu, P.: High-order positivity-preserving kinetic schemes for the compressible Euler equations. SIAM J. Numer. Anal. 33(5), 2050–2067 (1996)
Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)
Tang, T., Xu, K.: Gas-kinetic schemes for the compressible Euler equations: positivity-preserving analysis. Z. Angew. Math. Phys. 50(2), 258–281 (1999)
Dubroca, B.: Solveur de Roe positivement conservatif. C. R. Acad. Sci. Paris Sér. I Math. 329(9), 827–832 (1999)
Tang, H.-Z., Xu, K.: Positivity-preserving analysis of explicit and implicit Lax–Friedrichs schemes for compressible Euler equations. J. Sci. Comput. 15(1), 19–28 (2000)
Gallice, Gérard: Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94(4), 673–713 (2003)
Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)
Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)
Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50(1), 29–62 (2012)
Kontzialis, K., Ekaterinaris, J.A.: High order discontinuous Galerkin discretizations with a new limiting approach and positivity preservation for strong moving shocks. Comput. Fluids 71, 98–112 (2013)
Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)
Rossmanith, J.A., Seal, D.C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)
Güçlü, Y., Christlieb, A.J., Hitchon, W.N.G.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)
Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)
Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport II: generalizations of the method. J. Comput. Phys. 18(3), 248–283 (1975)
Boris, J.P., Book, D.L.: Flux-corrected transport. III. Minimal-error FCT algorithms. J. Comput. Phys. 20(4), 397–431 (1976)
Book, D.L., Boris, J.P., Zalesak, S.T.: Flux-corrected transport. In: Book, D. L. (ed.) Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations, pp. 29–55. Springer, New York (1981)
Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83(289), 2213–2238 (2014)
Liang, C., Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving multi-dimensional scalar hyperbolic conservation laws. J. Sci. Comput. 58(1), 41–60 (2014)
Xiong, T., Qiu, J.-M., Xu, Z.: A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252, 310–331 (2013)
Christlieb, A.J., Liu, Y., Tang, Q., Xu, Z.: Positivity-preserving finite difference weighted eno schemes with constrained transport for ideal magnetohydrodynamic equations. SIAM J. Sci. Comput. 37(4), A1825–A1845 (2015)
Seal, D.C.: FINESS software, 2015. https://bitbucket.org/dseal/finess
Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, Massachusetts (1959)
Seal, D.C., Güçlü, Y., Christlieb, A.J.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60(1), 101–140 (2014)
Acknowledgments
The authors would like to thank the anonymous reviewer for the helpful suggestions to further improve this work. This work has been supported in part by Air Force Office of Scientific Research Grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, and by National Science Foundation Grant Numbers DMS-1115709 and DMS-1316662.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Seal, D.C., Tang, Q., Xu, Z. et al. An Explicit High-Order Single-Stage Single-Step Positivity-Preserving Finite Difference WENO Method for the Compressible Euler Equations. J Sci Comput 68, 171–190 (2016). https://doi.org/10.1007/s10915-015-0134-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0134-0
Keywords
- Hyperbolic conservation laws
- Lax–Wendroff
- Weighted essentially non-oscillatory
- Positivity-preserving