Journal of Scientific Computing

, Volume 67, Issue 2, pp 747–768 | Cite as

Equilibration a Posteriori Error Estimation for Convection–Diffusion–Reaction Problems

  • M. Eigel
  • C. MerdonEmail author


We study a posteriori error estimates for convection–diffusion–reaction problems with possibly dominating convection or reaction and inhomogeneous boundary conditions. For the conforming FEM discretisation with streamline diffusion stabilisation, we derive reliable and efficient error estimators based on the reconstruction of equilibrated fluxes in an admissible discrete subspace of \({H({{\mathrm{div}}},\Omega )}\). Error estimators of this type have become popular recently since they provide guaranteed error bounds without further unknown constants. The estimators can be improved significantly by some postprocessing and divergence correction technique. For an extension of the energy norm by a dual norm of the convection part of the differential operator, robustness of the error estimator with respect to the coefficients of the problem is achieved. Numerical benchmarks illustrate the good performance of the error estimators for singularly perturbed problems, in particular with dominating convection.


A posteriori Error analysis Finite element method Equilibrated Convection dominated Adaptivity Inhomogeneous Dirichlet Augmented norm 

Mathematics Subject Classification

65N30 65N15 65J15 65N22 65J10 


  1. 1.
    Ainsworth, M., Allendes, A., Barrenechea, G.R., Rankin, R.: Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions. Int. J. Numer. Methods Fluids 73(9), 765–790 (2013)MathSciNetGoogle Scholar
  2. 2.
    Brenner, S.C., Carstensen, C.: Finite Element Methods. Wiley, London (2004)CrossRefGoogle Scholar
  3. 3.
    Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99(1), 1–24 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carstensen, C., Eigel, M., Hoppe, R.H.W., Löbhard, C.: A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5(4), 509–558 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. Math. Model. Numer. Anal. 43(5), 867–888 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, vol. 4Google Scholar
  9. 9.
    Carstensen, C., Merdon, C.: Estimator competition for Poisson problems. J. Comput. Math. 28(3), 309–330 (2010). (electronic)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carstensen, C., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math. 123(3), 425–459 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carstensen, C., Merdon, C.: Refined fully explicit a posteriori residual-based error control. SIAM J. Numer. Anal. 52(4), 1709–1728 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection–diffusion problems. Math. Comput. 60(201), 167–188 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows (Papers, Winter Ann. Meeting Am. Soc. Mech. Eng., New York, 1979), vol. 34 of AMD, pp. 19–35. Am. Soc. Mech. Eng., New York (1979)Google Scholar
  17. 17.
    Hughes, T.J.R., Mallet, M., Akira, M.: A new finite element formulation for computational fluid dynamics. II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54(3), 341–355 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations. Math. Comput. Simul. 255(1), 289–305 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Johnson, C.: Adaptive finite element methods for diffusion and convection problems. Comput. Methods Appl. Mech. Eng. 82(1–3), 301–322 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    John, Volker: A numerical study of a posteriori error estimators for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5–7), 757–781 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts in Applied Mathematics, vol. 44. Springer, New York (2003)zbMATHGoogle Scholar
  23. 23.
    Laugesen, R.S., Siudeja, B.A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249(1), 118–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Merdon, C.: Aspects of guaranteed error control in computation for partial differential equations. Ph.D. thesis (2013)Google Scholar
  26. 26.
    Papastavrou, A., Verfürth, R.: A posteriori error estimators for stationary convection–diffusion problems: a computational comparison. Comput. Methods Appl. Mech. Eng. 189(2), 449–462 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Repin, S.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 4. Walter de Gruyter GmbH & Co. KG, Berlin (2008)CrossRefGoogle Scholar
  29. 29.
    Repin, S., Sauter, S.: Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris 343(5), 349–354 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sangalli, G.: A uniform analysis of nonsymmetric and coercive linear operators. SIAM J. Math. Anal. 36(6), 2033–2048 (2005). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Stevenson, R.: The uniform saturation property for a singularly perturbed reaction–diffusion equation. Numer. Math. 101, 355–379 (2005). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Verfürth, R.: A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47(4), 3180–3194 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Weierstrass Institute BerlinBerlinGermany

Personalised recommendations