Journal of Scientific Computing

, Volume 66, Issue 3, pp 1218–1233 | Cite as

Direct Minimization for Ensemble Electronic Structure Calculations

Article
  • 105 Downloads

Abstract

We consider a direct optimization approach for ensemble density functional theory electronic structure calculations. The update operator for the electronic orbitals takes the structure of the Stiefel manifold into account and we present an optimization scheme for the occupation numbers that ensures that the constraints remain satisfied. We also compare sequential and simultaneous quasi-Newton and nonlinear conjugate gradient optimization procedures, and demonstrate that simultaneous optimization of the electronic orbitals and occupation numbers improve performance compared to the sequential approach.

Keywords

Quasi-Newton method Nonlinear conjugate gradient Ensemble optimization Electronic structure Stiefel manifold 

References

  1. 1.
    Baarman, K., Eirola, T., Havu, V.: Direct minimization of electronic structure calculations with Householder reflections (preprint). arXiv:1204.1204
  2. 2.
    Baarman, K., Eirola, T., Havu, V.: Robust acceleration of self consistent field calculations in density functional theory. J. Chem. Phys. 134, 134109 (2011)CrossRefGoogle Scholar
  3. 3.
    Baarman, K., VandeVondele, J.: A comparison of accelerators for direct energy minimization in electronic structure calculations. J. Chem. Phys. 134, 244104 (2011)CrossRefGoogle Scholar
  4. 4.
    Bekas, C., Kokiopoulou, E., Saad, Y.: Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30, 397 (2008)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Blum, V., Gehrke, R., Havu, P., Havu, V., Ren, X., Reuter, K., Scheffler, M.: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Cancès, E.: Self-consistent field algorithms for Kohn–Sham models with fractional occupation numbers. J. Chem. Phys. 114, 244104 (2001)Google Scholar
  7. 7.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303 (1998)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Fang, H., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16, 197 (2009)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Freysoldt, C., Boeck, S., Neugebauer, J.: Direct minimization technique for metals in density functional theory. Phys. Rev. B 79, 241103 (2009)CrossRefGoogle Scholar
  10. 10.
    Fu, C., Ho, K.: First-principles calculation of the equilibrium ground-state properties of transition metals: applications to Nb and Mo. Phys. Rev. B 28, 5480 (1983)CrossRefGoogle Scholar
  11. 11.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  12. 12.
    Marks, L.D., Luke, D.R.: Robust mixing for ab initio quantum mechanical calculations. Phys. Rev. B 78, 075114 (2008)CrossRefGoogle Scholar
  13. 13.
    Marzari, N., Vanderbilt, D., Payne, M.C.: Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett. 79, 1337 (1997)CrossRefGoogle Scholar
  14. 14.
    Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Methfessel, M., Paxton, A.T.: High precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)CrossRefGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2006)MATHGoogle Scholar
  17. 17.
    Pulay, P.: Convergence acceleration in iterative sequences: the case of SCF iteration. Chem. Phys. Lett. 73, 393 (1980)CrossRefGoogle Scholar
  18. 18.
    Ruiz-Serrano, A., Skylaris, C.-K.: A variational method for density functional theory calculations on metallic systems with thousands of atoms. J. Chem. Phys. 139, 054107 (2013)CrossRefGoogle Scholar
  19. 19.
    Saad, Y., Chelikowsky, J.R., Shontz, S.M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52, 3 (2010)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    VandeVondele, J., Hutter, J.: An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118, 4365 (2003)CrossRefGoogle Scholar
  21. 21.
    van Voorhis, T., Head-Gordon, M.: A geometric approach to direct minimization. Mol. Phys. 100, 1713 (2002)CrossRefGoogle Scholar
  22. 22.
    Wagner, F., Laloyaux, T., Scheffler, M.: Errors in Hellmann-Feynman forces due to occupation-number broadening and how they can be corrected. Phys. Rev. B 57, 2102 (1998)CrossRefGoogle Scholar
  23. 23.
    Zhou, Y., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys. Rev. E 74, 066704 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto University School of ScienceEspooFinland
  2. 2.COMP/Department of Applied PhysicsAalto Univerity School of ScienceEspooFinland

Personalised recommendations