Skip to main content
Log in

New Time Differencing Methods for Spectral Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new semi-analytical time differencing is applied to spectral methods for partial differential equations which involve higher spatial derivatives. This is developed in Jung and Nguyen (J Sci Comput (2015) 63:355–373) based on the classical integrating factor (IF) and exponential time differencing (ETD) methods. The basic idea is approximating analytically the stiffness (fast part) by the so-called correctors (see 1.3 below) and numerically the non-stiffness (slow part) by the IF and ETD, etc. It turns out that rapid decay and rapid oscillatory modes in the spectral methods are well approximated by our corrector methods, which in turn provides better accuracy in the numerical schemes presented in the text. We investigate some nonlinear problems with a quadratic nonlinear term, which makes all Fourier modes interact with each other. We construct the correctors recursively to accurately capture the stiffness in the mode interactions. Polynomial or other types of nonlinear interactions can be tackled in a similar fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashi, H.: Numerical methods for stiff systems, Ph.D. thesis, the University of Nottingham, (2008)

  4. Aziz Z.A., et al.: Fourth-order time stepping for stiff PDEs via integrating factor. Adv. Sci. Lett. 19(1) pp. 170–173 (2013)

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, Mineola (2001)

    MATH  Google Scholar 

  6. Collet, P., Eckmann, J.-P., Epstein, H., Stubbe, J.: Analyticity for the Kuramoto–Sivashinsky equation. Phys. D 67, 321–326 (1993). North-Holland, Amsterdam

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics. Springer, Berlin (1988)

    Book  Google Scholar 

  8. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Weinan, E., Engquist, Bjorn, Li, Xiantao, Ren, Weiqing, Vanden-Eijnden, Eric: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Engquist, B., Tsai, Y.-H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74(252), 1707–1742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  12. Holmes, M.H.: Introduction to Perturbation Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

  13. Han, H., Kellogg, R.B.: A method of enriched subspaces for the numerical solution of a parabolic singular perturbation problem. In: John J. H. Miller (ed.) Computational and Asymptotic Methods for Boundary and Interior Layers: Proceedings of the BAIL II Conference held at Trinity College, Dublin, from 16th to 18th June (1982)

  14. Hyman, J.M., Nicolaenko, B.: The Kuramoto–Sivashinsky equation: a bridge between PDE’s and dynamical systems. Phys. D 18, 113–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoz, F.D.L., Vadillo, F.: An exponential time differencing method for the nonlinear Schrödinger equation. Comput. Phys. Commun. 179, 449–456 (2008)

    Article  MATH  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential–Algebraic Problems. Springer-Verlag, Berlin, Heidelberg, New York (1996)

  17. Johnson, R.S.: Singular Perturbation Theory. Springer, New York (2005)

    MATH  Google Scholar 

  18. Jung, C.: Finite elements scheme in enriched subspaces for singularly perturbed reaction–diffusion problems on a square domain. Asymptot. Anal. 57, 41–69 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Jin, S., Levermore, C.D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126, 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jung, C., Nguyen, T.B.: Semi-analytical numerical methods for convection-dominated problems with turning points. Int. J. Numer. Anal. Mod. 10(2), 314–332 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Jung, C., Nguyen, T. B.: Semi-analytical time differencing methods for stiff problems, J. Sci. Comput. 63, 355–373 (2015)

  22. Jung, C., Temam, R.: Asymptotic analysis for singularly perturbed convection–diffusion equations with a turning point. J. Math. Phys. 48, 065301 (2007)

    Article  MathSciNet  Google Scholar 

  23. Jung, C., Temam, R.: Finite volume approximation of one-dimensional stiff convection–diffusion equations. J. Sci. Comput. 41(3), 384–410 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, Inc. (1996)

  26. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55(2), 256–369 (1976)

  27. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Krogstad, S.: Generalized integrating factors methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kellogg, R.B., Stynes, M.: Layers and corner singularities in singularly perturbed elliptic problems. BIT 48(2), 309–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: algorithms and applications. Annu. Rev. Phys. Chem 60, 321–344 (2009)

    Article  Google Scholar 

  31. Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26(5), 1139–1157 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mai-Duy, N., Pan, D., Phan-Thien, N., Khoo, B.C.: Dissipative particle dynamics modeling of low Reynolds number incompressible flows. J. Rheol. 57, 585 (2013)

    Article  Google Scholar 

  33. Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto–Sivashisky equations: nonlinear stability and attractors. Phys. D 16, 155–183 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. O’Malley, R.E.: Singularly perturbed linear two-point boundary value problems. SIAM Rev. 50(3), 459–482 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sivashinsky, S.I.: Nonlinear analysis of hydrodynamic instability in laminar flames, Part I. Derivation of basis equations. Acta Astronaut. 4, 1177–1206 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shih, S., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18, 1467–1511 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sivashinsky, S.I., Michelson, D.M.: On irregular wavy flow of a liquid film dowm a vertical plane. Prog. Theor. Phys. 63, 2112–2114 (1980)

    Article  Google Scholar 

  38. Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Trefethen, L.N.: Spectral methods in Matlab. Soc. for Industr. Appl. Math, Philadelphia (2000)

  40. Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8(4), 1269–1324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Usp. Mat. Nauk 12(3), 122 (1957)

    Google Scholar 

  42. Wasow, W.: Linear Turning Point Theory. Spinger, New York (1985)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (2012R1A1B3001167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yeol Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, CY., Nguyen, T.B. New Time Differencing Methods for Spectral Methods. J Sci Comput 66, 650–671 (2016). https://doi.org/10.1007/s10915-015-0037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0037-0

Keywords

Mathematics Subject Classification

Navigation