Skip to main content
Log in

A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrödinger Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop and analyze a new multiscale discontinuous Galerkin (DG) method for one-dimensional stationary Schrödinger equations with open boundary conditions which have highly oscillating solutions. Our method uses a smaller finite element space than the WKB local DG method proposed in Wang and Shu (J Comput Phys 218:295–323, 2006) while achieving the same order of accuracy with no resonance errors. We prove that the DG approximation converges optimally with respect to the mesh size \(h\) in \(L^2\) norm without the typical constraint that \(h\) has to be smaller than the wave length. Numerical experiments were carried out to verify the second order optimal convergence rate of the method and to demonstrate its ability to capture oscillating solutions on coarse meshes in the applications to Schrödinger equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aarnes, J., Heimsund, B.-O.: Multiscale discontinuous Galerkin methods for elliptic problems with multiple scales. In: Multiscale Methods in Science and Engineering, Lecture Notes in Computer Science Engineering, vol. 44, pp. 1–20. Springer, Berlin (2005)

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Ben Abdallah, N., Negulescu, C.: WKB-based schemes for the oscillatory 1D Schrödinger equation in the semiclassical limit. SIAM J. Numer. Anal. 49, 1436–1460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben Abdallah, N., Mouis, M., Negulescu, C.: An accelerated algorithm for 2D simulations of the quantum ballistic transport in nanoscale MOSFETs. J. Comput. Phys. 225, 74–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Abdallah, N., Pinaud, O.: Multiscale simulation of transport in an open quantum system: resonances and WKB interpolation. J. Comput. Phys. 213, 288–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohm, D.: Quantum Theory. Dover, New York (1989)

    Google Scholar 

  7. Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the helmholtz equation. ESAIM M2AN Math Model. Numer. Anal. 42, 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection–diffusion problems. J. Sci. Comput. 32, 233–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47, 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabard, G.: Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225, 1961–1984 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gittelson, C., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM M2AN Math Model. Numer. Anal. 43, 297–331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)

    Article  Google Scholar 

  14. Negulescu, C.: Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation. Numer. Math. 108, 625–652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Negulescu, C., Ben Abdallah, N., Polizzi, E., Mouis, M.: Simulation schemes in 2D nanoscale MOSFETs: a WKB based method. J. Comput. Electron. 3, 397–400 (2004)

    Article  Google Scholar 

  16. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, W., Guzmán, J., Shu, C.-W.: The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model 8, 28–47 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Wang, W., Shu, C.-W.: The WKB local discontinuous Galerkin method for the simulation of Schrödinger equation in a resonant tunneling diode. J. Sci. Comput. 40, 360–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method for a class of elliptic multi-scale problems. Int. J. Numer. Methods Fluids 56, 1017–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y., Wang, W., Guzmán, J., Shu, C.-W.: Multi-scale discontinuous Galerkin method for solving elliptic problems with curvilinear unidirectional rough coefficients. J. Sci. Comput. 61, 42–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors consent to comply with all the Publication Ethical Standards. The research of the first author is supported by NSF Grant DMS-1419029. The research of the second author is supported by DOE Grant DE-FG02-08ER25863 and NSF Grant DMS-1418750. The research of the third author is supported by NSF Grant DMS-1418953.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Shu, CW. & Wang, W. A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrödinger Equation. J Sci Comput 66, 321–345 (2016). https://doi.org/10.1007/s10915-015-0022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0022-7

Keywords

Navigation