Skip to main content
Log in

A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose and test the first Reduced Radial Basis Function Method for solving parametric partial differential equations on irregular domains. The two major ingredients are a stable Radial Basis Function (RBF) solver that has an optimized set of centers chosen through a reduced-basis-type greedy algorithm, and a collocation-based model reduction approach that systematically generates a reduced-order approximation whose dimension is orders of magnitude smaller than the total number of RBF centers. The resulting algorithm is efficient and accurate as demonstrated through two- and three-dimensional test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528 (1978)

    Article  Google Scholar 

  2. Balmes, E.: Parametric families of reduced finite element models: theory and applications. Mach. Syst. Signal Process. 10(4), 381–394 (1996)

    Article  Google Scholar 

  3. Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Sér I 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, A., Reddien, G.: On the reduced basis method. Z. Angew. Math. Mech. 75(7), 543–549 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayona, V., Moscoso, M., Kindelan, M.: Optimal constant shape parameter for multiquadric based RBF-FD method. J. Comput. Phys. 230(19), 7384–7399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayona, V., Moscoso, M., Kindelan, M.: Gaussian RBF-FD weights and its corresponding local truncation errors. Eng. Anal. Bound. Elem. 36(9), 1361–1369 (2012)

    Article  MathSciNet  Google Scholar 

  7. Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM Math. Model. Numer. Anal. 46, 595–603 (2011). (Special Issue in honor of David Gottlieb)

    Article  MathSciNet  Google Scholar 

  9. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  10. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. Numer. Algorithms 68(2), 393–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Gottlieb, S.: Reduced collocation methods: reduced basis methods in the collocation framework. J. Sci. Comput. 55(3), 718–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y., Gottlieb, S., Maday, Y.: Parametric analytical preconditioning and its applications to the reduced collocation methods. C. R. Math. 352(7–8), 661–666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d Maxwell’s problem. Math. Modell. Numer. Anal. 43, 1099–1116 (2009)

    Article  MATH  Google Scholar 

  15. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fasshauer, G.E.: Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ: With 1 CD-ROM. (Windows, Macintosh and UNIX) (2007)

  20. Fink, J.P., Rheinboldt, W.C.: On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63(1), 21–28 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fornberg, B., Lehto, E.: Stabilization of RBF-generated finite difference methods for convective PDEs. J. Comput. Phys. 230(6), 2270–2285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)

    Article  MathSciNet  Google Scholar 

  24. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2008)

    Article  MathSciNet  Google Scholar 

  25. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gonnet, P., Pachón, R., Trefethen, L.N.: Robust rational interpolation and least-squares. Electron. Trans. Numer. Anal. 38, 146–167 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math. Modell. Numer. Anal. 41(3), 575–605 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Model. Numer. Anal. 39(1), 157–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  31. Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Eng. 199, 1963–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci. Paris Sér I. 345, 473–478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics I: surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8/9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics II: solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19(8/9), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maday, Y., Patera, A.T., Turinici, G.: A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17, 437–446 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marchi, S.D., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317–330 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Matache, A.M., Babuška, I., Schwab, C.: Generalized \(p\)-FEM in homogenization. Numer. Math. 86(2), 319–375 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Micchelli, C.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagy, D.A.: Modal representation of geometrically nonlinear behaviour by the finite element method. Comput. Struct. 10, 683–688 (1979)

    Article  MATH  Google Scholar 

  42. Nguyen, N.C., Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for parametrized parabolic pdes; application to real-time bayesian parameter estimation. In: Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Marzouk, Y., Tenorio, L., van Bloemen Waanders, B., Willcox, K. (eds.) Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley, New York (2010)

    Google Scholar 

  43. Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  44. Peterson, J.S.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10(4), 777–786 (1989)

    Article  MATH  Google Scholar 

  45. Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578–1597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  48. Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45(172), 487–496 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  49. Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  50. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications, Mathematics Monograph Series, vol. 3. Science Press Beijing, Beijing (2006)

    Google Scholar 

  52. Shu, C., Ding, H., Yeo, K.S.: Computation of incompressible Navier–Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)

    Book  Google Scholar 

  55. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Veroy, K., Prud’homme, C., Patera, A.T.: Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Sér I 337(9), 619–624 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  59. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Yano, M., Patera, A.T.: A space–time variational approach to hydrodynamic stability theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2155), 20130036 (2013)

    Article  MathSciNet  Google Scholar 

  61. Yano, M., Patera, Anthony T., Urban, K.: A space–time \(hp\)-interpolation-based certified reduced basis method for Burgers’ equation. Math. Models Methods Appl. Sci. 24(9), 1903–1935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlai Chen.

Additional information

Y. Chen: The research of this author was partially supported by National Science Foundation Grant DMS-1216928.

S. Gottlieb, A. Heryudono: The research of this author was partially supported by AFOSR Grant FA9550-09-1-0208.

A. Heryudono, A. Narayan: The research of this author was partially supported by National Science Foundation Grant DMS-1318427.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gottlieb, S., Heryudono, A. et al. A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains. J Sci Comput 66, 67–90 (2016). https://doi.org/10.1007/s10915-015-0013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0013-8

Keywords

Navigation