Skip to main content
Log in

Revisit of the Indirect Boundary Element Method: Necessary and Sufficient Formulation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Although the boundary element method (BEM) has been developed over forty years, the single-layer potential approach is incomplete for solving not only the interior 2D problem in case of a degenerate scale but also the exterior problem with bounded potential at infinity for any scale. The indirect boundary element method (IBEM) is revisited to examine the uniqueness of the solution by using the necessary and sufficient boundary integral equation (BIE). For the necessary and sufficient BIE, a free constant and an extra constraint are simultaneously introduced into the conventional IBEM. The reason why a free constant and an extra constraint are both required is clearly explained by using the degenerate kernel. In order to complete the range of the IBEM lacking a constant term in the case of a degenerate scale, we provide a complete base with a constant. On the other hand, the formulation of the IBEM does not contain a constant field in the degenerate kernel expansion for the exterior problem. To satisfy the bounded potential at infinity, the integration of boundary density is enforced to be zero. Besides, sources can be distributed on either the real boundary or the auxiliary (artificial) boundary in this IBEM. The enriched IBEM is not only free of the degenerate-scale problem for the interior problem but also satisfies the bounded potential at infinity for the exterior problem. Finally, three examples, a circular domain, an infinite domain with two circular holes and an eccentric annulus were demonstrated to illustrate the validity and the effectiveness of the necessary and sufficient BIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rizzo, F.J.: An integral equation approach to boundary value problems in classical elastostatics. Q. Appl. Math. 25, 83–95 (1967)

    MATH  Google Scholar 

  2. He, W.J., Ding, H.J., Hu, H.C.: Non-equivalence of the conventional boundary integral formulation and its elimination for two-dimensional mixed potential problems. Comput. Struct. 60(6), 1029–1035 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, J.T., Chen, K.H., Chen, I.L., Liu, L.W.: A new concept of modal participation factor for numerical instability in the dual BEM for exterior acoustics. Mech. Res. Commun. 30(6), 161–174 (2003)

    Article  MATH  Google Scholar 

  4. Zhou, S.J., Sun, S.X., Cao, X.Y.: The boundary contour method based on the equivalent boundary integral equation for 2-D linear elasticity. Comm. Numer. Methods Eng. 15(11), 811–821 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Constanda, C.: On the Dirichlet problem for the two dimensional biharmonic equation. Math. Methods Appl. Sci. 20, 885–890 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. He, W.J.: An equivalent boundary integral formulation for bending problems of thin plates. Comput. Struct. 74, 319–322 (2000)

    Article  Google Scholar 

  7. Mitra, A.K., Das, S.: Nonuniqueness in the integral equations formulation of the biharmonic equation in multiply connected domains. Comput. Methods Appl. Mech. Eng. 69, 205–214 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Altiero, N.J., Gavazza, S.D.: On a unified boundary-integral equation method. J. Elast. 10, 1–9 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hong, H.-K., Chen, J.T.: Derivations of integral equations of elasticity. J. Eng. Mech. ASCE 114, 1028–1044 (1988)

    Article  Google Scholar 

  10. Banerjee, P.K., Butterfield, R.: Boundary Element Methods in Engineering Science. McGraw-Hill, London (1981)

    MATH  Google Scholar 

  11. Chen, J.T., Lin, S.R., Chen, K.H.: Degenerate scale problem when solving Laplace equation by BEM and its treatment. Int. J. Numer. Methods Eng. 62, 233–261 (2005)

    Article  MATH  Google Scholar 

  12. Christiansen, S.: Detecting non-uniqueness of solutions to biharmonic integral equations through SVD. J. Comput. Appl. Math. 134, 23–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Y.Z., Lin, X.Y.: Regularity condition and numerical examination for degenerate scale problem of BIE for exterior problem of plane elasticity. Eng. Anal. Bound. Elem. 32, 811–823 (2008)

    Article  MATH  Google Scholar 

  14. Yan, Y., Sloan, I.H.: On integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 549–580 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jaswon, M.A., Symm, G.T.: Integral Equation Methods in Potential Theory and Elastostatics. Academic Press, New York (1977)

    MATH  Google Scholar 

  16. Hille, E.: Analytical Function Theory, vol. II. Ginn Comp, Boston (1962)

    Google Scholar 

  17. Constanda, C.: On the solution of the Dirichlet problem for the two-dimensional Laplace equation. Proc. Am. Math. Soc. 119, 877–884 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen, J.T., Kuo, S.R., Lin, J.H.: Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity. Int. J. Numer. Methods Eng. 54, 1669–1681 (2002)

    Article  MATH  Google Scholar 

  19. Kuo, S.R., Chen, J.T., Kao, S.K.: Linkage between the unit logarithmic capacity in the theory of complex variables and the degenerate scale in the BEM/BIEMs. Appl. Math. Lett. 26, 929–938 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen, J.T., Lee, Y.T., Kuo, S.R., Chen, Y.W.: Analytical derivation and numerical experiments of degenerate scale for an ellipse in BEM. Eng. Anal. Bound. Elem. 36, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  21. Chen, J.T., Han, H., Kuo, S.R., Kao, S.K.: Regularized methods for ill-conditioned system of the integral equations of the first kind. Inverse Probl. Sci. Eng. 22(7), 1176–1195 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hsiao, G., Maccamy, R.C.: Solution of boundary value problems by integral equations of the first kind. SIAM Rev. 15, 687–705 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fichera, G.: Linear elliptic equations of higher order in two independent variables and singular integral equations. In: Proceedings Conference on Partial Differential Equations and Continuum Mechanics. University of Wisconsin Press, Madison, Wisconsin (1961)

  24. Saavedra, I., Power, H.: Adaptive refinement scheme for the least-squares approach of the method of fundamental solution for three-dimensional harmonic problems. Eng. Anal. Bound. Elem. 28, 1123–1133 (2004)

    Article  MATH  Google Scholar 

  25. Chen, W., Fu, Z., Wei, X.: Potential problems by singular boundary method satisfying moment condition. Comput. Model. Eng. Sci. 54(1), 65–85 (2009)

    MATH  MathSciNet  Google Scholar 

  26. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  27. Han, H., Wu, X.: Artificial Boundary Method. Springer, Berlin (2012)

    Google Scholar 

  28. Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 53, 851–879 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, J.T., Shieh, H.G., Tsai, J.J., Lee, J.W.: A study on the method of fundamental solutions using the image concept. Appl. Math. Model. 34, 4253–4266 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput. Appl. Math. 212, 127–149 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the support from the Ministry of Science Technology of Taiwan under contract NSC 102-2221-E-019-034 and MOST 103-2221-E-012-MY3. We also appreciate Prof. Houde Han and Dr. Y. T. Lee for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Tzong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JT., Chang, YL., Kao, SK. et al. Revisit of the Indirect Boundary Element Method: Necessary and Sufficient Formulation. J Sci Comput 65, 467–485 (2015). https://doi.org/10.1007/s10915-014-9974-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9974-2

Keywords

Navigation