Guaranteed Energy Error Estimators for a Modified Robust Crouzeix–Raviart Stokes Element

Abstract

This paper provides guaranteed upper energy error bounds for a modified lowest-order nonconforming Crouzeix–Raviart finite element method for the Stokes equations. The modification from Linke (Comput Methods Appl Mech Eng 268:782–800, 2014) is based on the observation that only the divergence-free part of the right-hand side should balance the vector Laplacian. The new method has optimal energy error estimates and can lead to errors that are smaller by several magnitudes, since the estimates are pressure-independent. An efficient a posteriori velocity error estimator for the modified method also should involve only the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz projector are compared and verified by numerical benchmark examples. They show that guaranteed error control for the modified method is possible and almost as sharp as for the unmodified method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal. 37(1), 18–36 (1999)

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Agouzal, A.: A posteriori error estimator for nonconforming finite element methods. Appl. Math. Lett. 7(5), 61–66 (1994)

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2004)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751–756 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York, NY (1991)

    MATH  Book  Google Scholar 

  6. 6.

    Brennecke, C., Linke, A., Merdon, C., Schöberl, J.: Optimal and pressure-independent \({L}^2\) velocity error estimates for a modified Crouzeix–Raviart Stokes element with BDM reconstructions. WIAS Preprint (2014), no. 1929

  7. 7.

    Bank, R.E., Welfert, B.D.: A posteriori error estimates for the Stokes problem. SIAM J. Numer. Anal. 28(3), 591–623 (1991)

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Carstensen, C.: An adaptive mesh-refining algorithm allowing for an \(H^1\) stable \(L^2\) projection onto Courant finite element spaces. Constr. Approx. 20(4), 549–564 (2004)

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix–Raviart and Raviart–Thomas finite element methods. J. Comput. Math. 30(4), 337–353 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for the Crouzeix–Raviart nonconforming finite element method for the Stokes problem. Comput. Methods Appl. Math. 14(1), 35–54 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Fr. Autom. Inf. Rech. Opér. Sér. Rouge 7(R–3), 33–75 (1973)

    MathSciNet  Google Scholar 

  12. 12.

    Dörfler, W., Ainsworth, M.: Reliable a posteriori error control for nonconformal finite element approximation of Stokes flow. Math. Comput. 74(252), 1599–1619 (2005)

    MATH  Article  Google Scholar 

  13. 13.

    Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35(5), 2099–2115 (1998)

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Dobrowolski, M.: On the LBB condition in the numerical analysis of the Stokes equations. Appl. Numer. Math. 54(3–4), 314–323 (2005)

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. In: Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Nonlinear steady problems. Springer, New York (1994)

  16. 16.

    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

    MATH  Book  Google Scholar 

  17. 17.

    Keßler, M.: Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Strömungsproblemen. Ph.D. thesis, Universität Würzburg (2002)

  18. 18.

    Kim, K.-Y.: Fully computable a posteriori error estimates for the Stokes equation without the global inf-sup constant. Comput. Math. Appl. 67(3), 681–691 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Engrg. 268, 782–800 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Laugesen, R.S., Siudeja, B.A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249(1), 118–135 (2010)

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Payne, L.E., Weinberger, H.F.: An optimal poincar inequality for convex domains. Arch. Ration. Mech. Anal. 5(1), 286–292 (1960)

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Stoyan, G.: Towards discrete Velte decompositions and narrow bounds for inf-sup constants. Comput. Math. Appl. 38, 243–261 (1999)

    MATH  MathSciNet  Article  Google Scholar 

  23. 23.

    Temam, R.: Navier–Stokes Equations. Elsevier, North-Holland (1991)

    Google Scholar 

  24. 24.

    Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)

    MATH  MathSciNet  Article  Google Scholar 

  25. 25.

    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  26. 26.

    Vohralík, M., Hannukainen, A., Stenberg, R.: A unified framework for aposteriori error estimation for the Stokes problem, Accepted for Numer. Math. (2011), HAL Preprint 00470131. http://hal.archives-ouvertes.fr/hal-00470131/en/

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Merdon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Linke, A., Merdon, C. Guaranteed Energy Error Estimators for a Modified Robust Crouzeix–Raviart Stokes Element. J Sci Comput 64, 541–558 (2015). https://doi.org/10.1007/s10915-014-9943-9

Download citation

Keywords

  • Mixed finite element methods
  • A posteriori error estimators
  • Stokes problem
  • Crouzeix–Raviart finite element methods
  • Divergence-free methods