Skip to main content
Log in

A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computational cost associated with the dense linear systems that arise. Therefore, research is currently directed towards localized RBF approximations such as the RBF partition of unity collocation method (RBF–PUM) proposed here. The objective of this paper is to establish that RBF–PUM is viable for parabolic PDEs of convection–diffusion type. The stability and accuracy of RBF–PUM is investigated partly theoretically and partly numerically. Numerical experiments show that high-order algebraic convergence can be achieved for convection–diffusion problems. Numerical comparisons with finite difference and pseudospectral methods have been performed, showing that RBF–PUM is competitive with respect to accuracy, and in some cases also with respect to computational time. As an application, RBF–PUM is employed for a two-dimensional American option pricing problem. It is shown that using a node layout that captures the solution features improves the accuracy significantly compared with a uniform node distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997). doi:10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N

  2. Ballestra, L.V., Pacelli, G.: Computing the survival probability density function in jump-diffusion models: a new approach based on radial basis functions. Eng. Anal. Bound. Elem. 35(9), 1075–1084 (2011). doi:10.1016/j.enganabound.2011.02.008

    Article  MATH  MathSciNet  Google Scholar 

  3. Ballestra, L.V., Pacelli, G.: A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications. Eng. Anal. Bound. Elem. 36(11), 1546–1554 (2012). doi:10.1016/j.enganabound.2012.04.011

    Article  MathSciNet  Google Scholar 

  4. Ballestra, L.V., Pacelli, G.: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach. J. Econ. Dyn. Control 37(6), 1142–1167 (2013). doi:10.1016/j.jedc.2013.01.013

    Article  MathSciNet  Google Scholar 

  5. Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options. Rev. Financ. Stud. 9(1), 69–107 (1996). doi:10.1093/rfs/9.1.69

    Article  Google Scholar 

  6. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  MATH  Google Scholar 

  7. Carr, P., Geman, H., Madan, D.B., Yor, M.: Stochastic volatility for Lévy processes. Math. Financ. 13(3), 345–382 (2003). doi:10.1111/1467-9965.00020

    Article  MATH  MathSciNet  Google Scholar 

  8. Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (1996)

    Google Scholar 

  9. Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Stat. 20(3), 297–338 (2002). doi:10.1198/073500102288618397

    Article  MathSciNet  Google Scholar 

  10. Fasshauer, G., Khaliq, A.Q.M., Voss, D.A.: Using meshfree approximation for multi asset American options. J. Chin. Inst. Eng. 27(4), 563–571 (2004). doi:10.1080/02533839.2004.9670904

  11. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisciplinary Mathematical Sciences, vol. 6, pp. xviii+500. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007)

  12. Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. VIII, ser. 5, pp. 3–30 (1956)

  13. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi:10.1137/09076756X

    Article  MATH  MathSciNet  Google Scholar 

  14. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi:10.1016/j.camwa.2007.01.028

    Article  MATH  MathSciNet  Google Scholar 

  15. Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691–1704 (1980). doi:10.1002/nme.1620151110

    Article  MATH  MathSciNet  Google Scholar 

  16. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84–90 (1960). doi:10.1007/BF01386213

    Article  MATH  MathSciNet  Google Scholar 

  17. Hon, Y.C., Mao, X.Z.: A radial basis function method for solving options pricing models. J. Financ. Eng. 8, 31–49 (1999)

    Google Scholar 

  18. In’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7(2), 303–320 (2010)

  19. Ito, K., Toivanen, J.: Lagrange multiplier approach with optimized finite difference stencils for pricing American options under stochastic volatility. SIAM J. Sci. Comput. 31(4), 2646–2664 (2009). doi:10.1137/07070574X

    Article  MATH  MathSciNet  Google Scholar 

  20. Janson, S., Tysk, J.: Feynman–Kac formulas for Black–Scholes-type operators. Bull. Lond. Math. Soc. 38(2), 269–282 (2006). doi:10.1112/S0024609306018194

    Article  MATH  MathSciNet  Google Scholar 

  21. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38(4), 1357–1368 (2000). doi:10.1137/S0036142999355921.

  22. Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48(8), 1086–1101 (2002)

    Article  MATH  Google Scholar 

  23. Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005). doi:10.1016/j.camwa.2005.01.010

    Article  MATH  MathSciNet  Google Scholar 

  25. Larsson, E., Gomes, S., Heryudono, A., Safdari-Vaighani, A.: Radial basis function methods in computational finance. In: Proceedings of the CMMSE 2013, p. 12, Almería, Spain (2013)

  26. Larsson, E., Heryudono, A.: A partition of unity radial basis function collocation method for partial differential equations (2015, in preparation)

  27. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013). doi:10.1137/120899108

    Article  MATH  MathSciNet  Google Scholar 

  28. McLain, D.H.: Two dimensional interpolation from random data. Comput. J. 19(2), 178–181 (1976). doi:10.1093/comjnl/19.2.178

    Article  MATH  MathSciNet  Google Scholar 

  29. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1–2), 125–144 (1976). doi:10.1016/0304-405X(76)90022-2

    Article  MATH  Google Scholar 

  30. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Financ. 5, 69–97 (2002)

    Google Scholar 

  31. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math. 222(1), 3–16 (2008). doi:10.1016/j.cam.2007.10.041

    Article  MATH  MathSciNet  Google Scholar 

  32. Persson, J., von Sydow, L.: Pricing American options using a space–time adaptive finite difference method. Math. Comput. Simulat. 80(9), 1922–1935 (2010). doi:10.1016/j.matcom.2010.02.008

  33. Pettersson, U., Larsson, E., Marcusson, G., Persson, J.: Improved radial basis function methods for multi-dimensional option pricing. J. Comput. Appl. Math. 222(1), 82–93 (2008). doi:10.1016/j.cam.2007.10.038

    Article  MATH  MathSciNet  Google Scholar 

  34. Platte, R.B.: How fast do radial basis function interpolants of analytic functions converge? IMA J. Numer. Anal. 31(4), 1578–1597 (2011). doi:10.1093/imanum/drq020

    Article  MATH  MathSciNet  Google Scholar 

  35. Reddy, S.C., Trefethen, L.N.: Stability of the method of lines. Numer. Math. 62(2), 235–267 (1992). doi:10.1007/BF01396228

    Article  MATH  MathSciNet  Google Scholar 

  36. Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010). doi:10.1007/s10444-008-9089-0

    Article  MATH  MathSciNet  Google Scholar 

  37. Rieger, C., Zwicknagl, B.: Improved exponential convergence rates by oversampling near the boundary. Constr. Approx. 39(2), 323–341 (2014). doi:10.1007/s00365-013-9211-5

  38. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference (ACM ‘68), pp. 517–524. ACM, New York, NY (1968)

  39. Tavella, D., Randall, C.: Pricing Financial Instruments. Wiley, New York (2000)

    Google Scholar 

  40. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

  41. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(4), 389–396 (1995). doi:10.1007/BF02123482

    Article  MATH  MathSciNet  Google Scholar 

  42. Wendland, H.: Fast evaluation of radial basis functions: methods based on partition of unity. In: Approximation Theory X (St. Louis, MO, 2001), pp. 473–483. Vanderbilt University Press, Nashville, TN (2002)

  43. Wright, T.G.: EigTool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/ (2002)

  44. Wu, Z., Hon, Y.C.: Convergence error estimate in solving free boundary diffusion problem by radial basis functions method. Eng. Anal. Bound. Elem. 27, 73–79 (2003). doi:10.1016/S0955-7997(02)00083-8

    Article  MATH  Google Scholar 

  45. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91(2), 199–218 (1998). doi:10.1016/S0377-0427(98)00037-5

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Victor Shcherbakov, Uppsala University who provided the FD-operator splitting implementation for the American option pricing problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Larsson.

Additional information

The work of the second author was supported in part by Marie Curie Grant FP7 235730, AFOSR Grant FA-9550-12-1-0224, and NSF Grant DMS 1318427.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdari-Vaighani, A., Heryudono, A. & Larsson, E. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications. J Sci Comput 64, 341–367 (2015). https://doi.org/10.1007/s10915-014-9935-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9935-9

Keywords

Mathematics Subject Classification

Navigation