Skip to main content
Log in

Finite Element Methods for the Temperature in Composite Media with Contact Resistance

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a heat diffusion problem inside a composite medium. The contact resistance at the interface of constitutive materials allows for jumps of the temperature field. The transmission conditions need to be handled carefully and efficiently. The main concerns are accuracy and feasibility. Hybrid dual formulations are recommended here as the most popular mixed finite elements well adapted to account for the discontinuity of the temperature field. We therefore write the discretization of the heat problem by mixed finite elements and perform its numerical analysis. Of course, applying Lagrangian finite elements is possible in simple composite media but it turns out to be problematic for complex geometries. Nevertheless, we study the convergence of this finite element method to highlight some particularities related to the model under consideration and point out the effect of the contact resistance on the accuracy. Illustrative numerical experiments are finally provided to assess the theoretical findings.

Résumé

Nous considérons une équation qui modélise la diffusion de la température dans une mousse de graphite contenant des capsules de sel. Les conditions de transition de la température entre le graphite et le sel doivent être traitées correctement. Nous effectuons l’analyse de ce modèle et prouvons qu’il est bien posé. Puis nous en proposons une discrétisation par éléments finis et effectuons l’analyse a priori du problème discret. Quelques expériences numériques confirment l’intérêt de cette approche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev Spaces. Academic Press, London (2003)

    MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cackburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  Google Scholar 

  3. Bernard, J.-M.: Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chin. Ann. Math. Ser. B 32, 823–846 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardi, C., Maday, Y., Patera, A.T.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.-L. (eds.) Collège de France Seminar. Pitman, London (1990)

    Google Scholar 

  5. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques. Collection “Mathématiques et Applications” 45. Springer, Berlin (2004)

  6. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Method, Texts in Applied Mathematics 15. Springer, Berlin (2008)

    Book  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

  9. Fletcher, L.S.: Conduction in solids, imperfect metal-to-metal contacts: thermal contact resistance, Section 502.5, Heat Transfer and Fluid Mechanics Data Books, Genium Publishing Company, Schenectady, New York (1991)

  10. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  11. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  12. Hecht, F.: Freefem\(_{++}\). Third Edition, Version 3.30, http://www.freefem.org/ff++

  13. Hecht, F.: New development in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jelassi, F., Azaïez, M., Palomo Del Barrio, E.: A substructuring method for phase change modelling in hybrid media. Comput. Fluids 88, 81–92 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jerison, D., Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Am. Math. Soc. 4, 203–207 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. I. Dunod, Paris (1968)

    MATH  Google Scholar 

  17. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606. Springer, Berlin, pp. 292–315 (1977)

  18. Roberts, J.E., Thomas, J.-M.: Mixed and Hybrid Methods, Handbook of Numerical Analysis. In: Ciarlet, P.G., Lions, J.-L. (eds.) Finite Element Methods (Part I), vol. II, pp. 523–639. Elsevier Science Publishers, Amsterdam (1991)

  19. Safa, Y.: Simulation numérique des phénomènes thermiques et magnétohydrodynamiques dans une cellule de Hall-Héroult. Ph. D, Ecole Polytechnique Fédérale de Lauzanne (2005)

  20. Swartz, E.T., Pohl, R.O.: Thermal boundary resistance. Rev. Mod. Phys. 61, 605 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

We are deeply grateful to Professor Vivette Girault for valuable discussion on the subject of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bernardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Belgacem, F., Bernardi, C., Jelassi, F. et al. Finite Element Methods for the Temperature in Composite Media with Contact Resistance. J Sci Comput 63, 478–501 (2015). https://doi.org/10.1007/s10915-014-9907-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9907-0

Keywords

Navigation