Skip to main content
Log in

Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An error analysis is presented for explicit partitioned Runge–Kutta methods and multirate methods applied to conservation laws. The interfaces, across which different methods or time steps are used, lead to order reduction of the schemes. Along with cell-based decompositions, also flux-based decompositions are studied. In the latter case mass conservation is guaranteed, but it will be seen that the accuracy may deteriorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenner, P., Crouzeix, M., Thomée, V.: Single step methods for inhomogeneous linear differential equations. RAIRO Anal. Numer. 16, 5–26 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge–Kutta methods. BIT 41, 504–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I—Nonstiff Problems, Springer Series Comput. Math. vol. 8, 2nd edn. Springer, Berlin (1993)

  6. Hundsdorfer, W., Mozartova, A., Savcenco, V.: Monotonicity conditions for multirate and partitioned explicit Runge–Kutta schemes. In: Ansorge R., et al. (eds.) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. NNFM, vol. 120, pp. 177–195. Springer, Berlin (2013)

  7. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Advection-Diffusion-Reaction Equations. Springer Series Comput. Math., vol. 33. Springer, Berlin (2003)

  9. Ketcheson, D.I., Macdonald, C.B., Ruuth, S.J.: Spatially partitioned embedded Runge–Kutta methods. SIAM J. Numer. Anal. 51, 2887–2910 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mathew, T.P., Polyakov, P.L., Russo, G., Wang, J.: Domain decomposition operator splittings for the solution of parabolic equations. SIAM J. Sci. Comput. 19, 912–932 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Osher, S., Sanders, R.: Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. Comput. 41, 321–336 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Portero, L., Jorge, J.C., Bujanda, B.: Avoiding order reduction of fractional step Runge–Kutta discretizations for linear time dependent oefficient parabolic problems. Appl. Numer. Math. 48, 409–424 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Portero, L., Bujanda, B., Jorge, J.C.: A combined fractional step domain decomposition method for the numerical integration of parabolic problems. In: Wyrzykowski R., et al. (eds.) Proceedings PPAM2003, LNCS, vol. 3019, pp. 1034–1041. Springer, Berlin (2004)

  14. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff ordinary differential equations. BIT 47, 137–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge–Kutta schemes for advection equations. J. Comput. Appl. Math. 226, 345–357 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Numerical solution of multiscale problems in atmospheric modeling. Appl. Numer. Math. 62, 1531–1543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tang, H.-Z., Warnecke, G.: High resolution schemes for conservation laws and convection–diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Wensch, J., Knoth, O., Galant, A.: Multirate infinitesimal step methods for atmospheric flow simulation. BIT Numer. Math. 49, 449–473 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper originated from work of W. H. with Anna Mozartova and Valeriu Savcenco. The contributions of Mozartova and Savcenco, on the design of multirate methods and monotonicity properties of these methods, are contained in [6]. They are thanked for helpful comments on preliminary convergence results for first-order methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Hundsdorfer.

Additional information

This work has been supported by Award No. FIC/2010/05 from King Abdullah University of Science and Technology (KAUST).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hundsdorfer, W., Ketcheson, D.I. & Savostianov, I. Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws. J Sci Comput 63, 633–653 (2015). https://doi.org/10.1007/s10915-014-9906-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9906-1

Keywords

Mathematics Subject Classification

Navigation