Abstract
We are concerned with the solution of time-dependent non-linear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge–Kutta-type time-stepping (discretisation in time). The introduced non-linear blending procedure allows us to retain the explicit character of the time-stepping procedure. The resulting methods are second order accurate provided that both spatial and temporal approximations are. The proposed approach results in a global linear system that has to be solved at each time-step. An efficient way of solving this system is also proposed. To test and validate this new framework, we perform extensive numerical experiments on a wide variety of classical problems. An extensive numerical comparison of our approach with other multi-stage residual distribution schemes is also given.
This is a preview of subscription content, access via your institution.
















References
Abgrall, R., Deconinck, H., Sermeus, K.: Status of multidimensional upwind residual distribution schemes and applications in aeronautics. In: AIAA Paper 2000–2328, Fluids 2000/Denver (2000)
Abgrall, R., Mezine, M.: Residual distribution schemes for steady problems. In: Computational Fluid Dynamics, VKI LS 2003–05. von Karman Institute for Fluid Dynamics (2003)
Abgrall, R., Roe, P.L.: High order fluctuation schemes on triangular meshes. J. Sci. Comput. 19(1–3), 3–36 (2003). Special issue in honor of the sixtieth birthday of Stanley Osher
Abgrall, R.: Toward the ultimate conservative scheme: following the quest. J. Comput. Phys. 167(2), 277–315 (2001)
Abgrall, R., Mezine, M.: Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems. J. Comput. Phys. 188(1), 16–55 (2003)
Abgrall, R.: A residual distribution method using discontinuous elements for the computation of possibly non smooth flows. Adv. Appl. Math. Mech. 2(1), 32–44 (2010)
Abgrall, Ricchiuto M.: Explicit Runge–Kutta residual distribution schemes for time dependent problems: second order case. J. Comput. Phys. 229(16), 5653–5691 (2010)
Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012)
Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Web page (2012). http://www.mcs.anl.gov/petsc
Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)
Caraeni, D., Fuchs, L.: Compact third-order multidimensional upwind scheme for Navier–Stokes simulations. Theor. Comput. Fluid Dyn. 15(6), 373–401 (2002)
Carette, J.C., Deconinck, H., Paillère, H., Roe, P.L.: Multidimensional upwinding: its relation to finite elements. Int. J. Numer. Methods Fluids 20(8–9), 935–955 (1995)
Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)
Csík, Á., Deconinck, H., Ricchiuto, M., Poedts, S.: Space-time residual distribution schemes for hyperbolic conservation laws. In: 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, USA (2001)
Csík, Á., Deconinck, H.: Space-time residual distribution schemes for hyperbolic conservation laws on unstructured linear finite elements. Int. J. Numer. Methods Fluids 40(3–4), 573–581 (2002)
Csík, Á., Ricchiuto, M., Deconinck, H.: A conservative formulation of the multidimensional upwind residual distribution schemes for general nonlinear conservation laws. J. Comput. Phys. 179(1), 286–312 (2002)
Csík, Á., Deconinck, H., Ricchiuto, M.: Residual distribution for general time-dependent conservation laws. J. Comput. Phys. 209(1), 249–289 (2005)
Deconinck, H., Ferrante, A.: Solution of the Unsteady Euler Equations using Residual Distribution and Flux Corrected Transport. Tech. Rep. 97–08, von Karman Institute for Fluid Dynamics (1997)
Deconinck, H., Ricchiuto, M.: Residual distribution schemes: foundations and analysis. In: Encyclopedia of Computational Mechanics, vol. 3. Wiley, London (2007)
Deconinck, H.: Upwind methods and multidimensional splittings for the Euler equations. In: Computational Fluid Dynamics, VKI LS 1991–01. von Karman Institute for Fluid Dynamics (1991)
Deconinck, H., Roe, P.L., Struijs, R.: A multidimensional generalization of Roe’s flux difference splitter for the Euler equations. Comput. Fluids 22(2–3), 215–222 (1993)
Dobeš, J., Deconinck, H.: Second order blended multidimensional upwind residual distribution scheme for steady and unsteady computations. J. Comput. Appl. Math. 215(2), 378–389 (2008)
Emery, A.F.: An evaluation of several differencing methods for inviscid fluid flow problems. J. Comput. Phys. 2, 306–331 (1968)
Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118. Springer, New York (1996)
Guzik, S.M.J., Groth, C.P.T.: Comparison of solution accuracy of multidimensional residual distribution and Godunov-type finite-volume methods. Int. J. Comput. Fluid Dyn. 22(1–2), 61–83 (2008)
Hubbard, M., Ricchiuto, M.: Discontinuous fluctuation distribution: a route to unconditional positivity and high order accuracy. In: ICFD 2010 International Conference on Fluid Dynamics, Reading (UK) (2010)
Hubbard, M.E.: Discontinuous fluctuation distribution. J. Comput. Phys. 227(24), 10125–10147 (2008)
Hubbard, M.E.: A framework for discontinuous fluctuation distribution. Int. J. Numer. Methods Fluids 56(8), 1305–1311 (2008)
Hughes, T.J.R., Mallet, M.: A new finite element formulation for CFD III: the generalized streamline operator for multidimensional advective-diffusive systems. Comput. Methods Appl. Mech. Eng. 58, 305–328 (1986)
Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover Publications Inc., Mineola, NY (2009). Reprint of the 1987 edition
LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (1992)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
März, J., Degrez, G.: Improving time accuracy of residual distribution schemes. Tech. Rep. 96–17, von Karman Institute for Fluid Dynamics (1996)
De Palma, P., Pascazio, G., Rossiello, G., Napolitano, M.: A second-order-accurate monotone implicit fluctuation splitting scheme for unsteady problems. J. Comput. Phys. 208(1), 1–33 (2005)
Roe, P.L.: Fluctuations and signals—a framework for numerical evolution problems. In: Numerical Methods for Fluid Dynamics, pp. 219–257. Academic Press, London (1982)
Roe, P.L.: Linear advection schemes on triangular meshes. Tech. Rep. Technical Report CoA 8720, Cranfield Institute of Technology (1987)
Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)
Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Struijs, R., Deconinck, H., Roe, P.L.: Fluctuation splitting schemes for the 2D Euler equations. In: Computational Fluid Dynamics, VKI LS 1991–01. von Karman Institute for Fluid Dynamics (1991)
van der Weide, E., Deconinck, H., Issman, E., Degrez, G.: A parallel, implicit, multi-dimensional upwind, residual distribution method for the Navier-Stokes equations on unstructured grids. Comput. Mech. 23(2), 199–208 (1999)
van der Weide, E., Deconinck, H.: Positive matrix distribution schemes for hyperbolic systems, with application to the Euler equations. In: Desideri, J., Hirsch, C., LeTallec, P., Pandolfi, M., Periaux, J. (eds.) Computational Fluid Dynamics ‘96, pp. 747–753 (1996)
Warzyński, A., Hubbard, M.E., Ricchiuto, M.: Discontinuous residual distribution schemes for time-dependent problems. In: Li J., Yang, H.T., Machorro, E. (ed.) Recent Advances In Scientific Computing and Applications, Contemporary Mathematics, vol. 586, pp. 375–382 (2013)
Warzyński, A.: Runge-kutta residual distribution schemes. Ph.D. thesis, University of Leeds (2013)
Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)
Acknowledgments
The first author would like to acknowledge EPSRC who funded this work under grant number EP/G003645/1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Warzyński, A., Hubbard, M.E. & Ricchiuto, M. Runge–Kutta Residual Distribution Schemes. J Sci Comput 62, 772–802 (2015). https://doi.org/10.1007/s10915-014-9879-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9879-0