Skip to main content
Log in

Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript


In this paper we develop high order asymptotic preserving methods for the spatially inhomogeneous quantum Boltzmann equation. We follow the work in Li and Pareschi (J Comput Phys 259:402–420, 2014) where asymptotic preserving exponential Runge–Kutta methods for the classical inhomogeneous Boltzmann equation were constructed. A major difficulty here is related to the non Gaussian steady states characterizing the quantum kinetic behavior. We show that the proposed schemes achieve high-order accuracy uniformly in time for all Planck constants ranging from classical regime to quantum regime, and all Knudsen number ranging from kinetic regime to fluid regime. Computational results are presented for both Bose gas and Fermi gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  1. Strictly speaking, \(\theta _0=\left( \frac{2\pi \hbar }{mx_0v_0}\right) ^dN\), where \(m\) is the particle mass, \(x_0\) and \(v_0\) are the typical values of length and velocity, \(N\) is the total number of particles.


  1. Arlotti, L., Lachowicz, M.: Euler and Navier–Stokes limits of the Uehling–Uhlenbeck quantum kinetic equations. J. Math. Phys. 38, 3571–3588 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227, 3781–3803 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  4. Degond, P., Jin, S., Mieussens, L.: A smooth transition model between kinetic and hydrodynamic equations. J. Comput. Phys. 209(2), 665–694 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dimarco, G., Pareschi, L.: Fluid solver independent hybrid methods for multiscale kinetic equations. SIAM J. Sci. Comput. 32(2), 603–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dimarco, G., Pareschi, L.: Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49(5), 2057–2077 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dimarco, G., Pareschi, L.: High order asymptotic-preserving schemes for the Boltzmann equation. Comptes Rendus Mathematique 350, 481–486 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Filbet, F., Hu, J., Jin, S.: A numerical scheme for the quantum Boltzmann equation with stiff collision terms. ESAIM Math. Model. Numer. Anal. 46, 443–463 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gabetta, E., Pareschi, L., Toscani, G.: Relaxation schemes for nonlinear kinetic equations. SIAM J. Numer. Anal. 34, 2168–2194 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garcia, A.L., Wagner, W.: Direct simulation Monte Carlo method for the Uehling–Uhlenbeck–Boltzmann equation. Phys. Rev. E 68, 056703 (2003)

    Article  Google Scholar 

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems (Springer Series in Computational Mathematics). Springer, (2010)

  13. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hu, J., Jin, S.: On kinetic flux vector splitting schemes for quantum Euler equations. Kinet. Relat. Models 4, 517–530 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hu, J., Jin, S., Yan, B.: A numerical scheme for the quantum Fokker–Planck–Landau equation efficient in the fluid regime. Commun. Comput. Phys. 12, 1541–1561 (2012)

    MathSciNet  Google Scholar 

  16. Hu, J., Ying, L.: A fast spectral algorithm for the quantum Boltzmann collision operator. Commun. Math. Sci. 10, 989–999 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Math. Univ. Parma 3, 177–216 (2012)

    MATH  MathSciNet  Google Scholar 

  18. Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics, vol. 773. Springer, Berlin (2009)

  19. LeVeque, R.J.: Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag (1992)

  20. Li, Q., Pareschi, L.: Exponential Runge–Kutta for the inhomogeneous Boltzmann equations with high order of accuracy. J. Comput. Phys. 259, 402–420 (2014)

    Article  MathSciNet  Google Scholar 

  21. Li, Q., Yang, X.: Exponential Runge–Kutta methods for the multispecies Boltzmann equation. Commun. Comput. Phys. 15, 996–1011 (2014)

    MathSciNet  Google Scholar 

  22. Markowich, P., Pareschi, L.: Fast, conservative and entropic numerical methods for the Bosonic Boltzmann equation. Numer. Math. 99, 509–532 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Markowich, P., Pareschi, L., Bao, W. Quantum kinetic theory: modelling and numerics for Bose–Einstein condensation. In: Modeling and Computational Methods for Kinetic Equations, Modeling and Simulation in Science, Engineering and Technology, Chapter 10, pp 287–320. Birkhauser, (2004)

  24. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer Verlag Wien, New York (1990)

    Book  MATH  Google Scholar 

  25. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75, 1833–1852 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nordheim, L.W.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)

    Article  MATH  Google Scholar 

  27. Pareschi, L., Caflisch, R.E.: An implicit Monte Carlo method for rarefied gas dynamics i: the space homogeneous case. J. Comput. Phys. 154, 90–116 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pareschi, L., Russo, G.: Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)

    MATH  MathSciNet  Google Scholar 

  29. Pareschi, L., Russo, G.: Efficient asymptotic preserving deterministic methods for the Boltzmann equation. In: Models and Computational Methods for Rarefied Flows. AVT-194 RTO AVT/VKI, Lecture Series held at the von Karman Institute, Rhode St. Genese, Belgium (2011)

  30. Pathria, R.K., Beale, P.D.: Statistical Mechanics, 3rd edn. Academic Press, London (2011)

    MATH  Google Scholar 

  31. Semikoz, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)

    Article  Google Scholar 

  32. Shu, C.-W.: Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. Technical report, Institute for Computer Applications in Science and Engineering (ICASE) (1997)

  33. Spohn, H.: Kinetics of the Bose–Einstein condensation. Phys. D 239, 627–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tiwari, S., Klar, A.: An adaptive domain decomposition procedure for Boltzmann and Euler equations. J. Comput. Appl. Math. 90, 223–237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev. 43, 552–561 (1933)

    Article  Google Scholar 

Download references


We would like to express our gratitude to the NSF Grant RNMS11-07444 (KI-Net), and CSCAMM, University of Maryland for holding the conference “Quantum Systems: A Mathematical Journey from Few to Many Particles” in May 2013, during which this work was initiated.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Qin Li.

Additional information

This work was partially supported by RNMS11-07444 (KI-Net) and by PRIN 2009 project “Advanced numerical methods for kinetic equations and balance laws with source terms”.

Appendix: Derivation of \(\partial _t \mathcal {M}_q\)

Appendix: Derivation of \(\partial _t \mathcal {M}_q\)

In this appendix, we give the details of the derivation of (3.8). Our goal is to represent \(\partial _tz\) and \(\partial _tT\) in Eq. (3.7) in terms of \(\partial _t\rho \) and \(\partial _te\).

First, combining the two equations in system (2.14) gives

$$\begin{aligned} \frac{Q_{\frac{d}{2}}^{\frac{d}{2}+1}(z)}{Q_{\frac{d}{2}+1}^{\frac{d}{2}}(z)}=\theta _0 \left( \frac{d}{4\pi e}\right) ^{\frac{d}{2}} \rho . \end{aligned}$$

Therefore, we define a function \(F(z)\) such that

$$\begin{aligned} y=F(z)=\frac{Q_{\frac{d}{2}}^{\frac{d}{2}+1}(z)}{Q_{\frac{d}{2}+1}^{\frac{d}{2}}(z)}, \end{aligned}$$

and a function \(G(y)\) such that

$$\begin{aligned} z=G(y)=F^{-1}(y). \end{aligned}$$

Then we have

$$\begin{aligned} G'(y)=\frac{1}{F'(z)}=\frac{Q_{\frac{d}{2}+1}^d(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}}^{\frac{d}{2}}(z)Q_{\frac{d}{2}}'(z)Q_{\frac{d}{2}+1}^{\frac{d}{2}}(z)-\frac{d}{2}Q_{\frac{d}{2}+1}^{\frac{d}{2}-1}(z)Q_{\frac{d}{2}+1}'(z)Q_{\frac{d}{2}}^{\frac{d}{2}+1}(z)}. \end{aligned}$$

For the Bose–Einstein/Fermi–Dirac function, one has the following nice property (see [30])

$$\begin{aligned} zQ_{\nu }'(z)=Q_{\nu -1}(z). \end{aligned}$$

Using (7.5) in (7.4),

$$\begin{aligned} G'(y)&=\frac{1}{F'(z)}=\frac{zQ_{\frac{d}{2}+1}^d(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}}^{\frac{d}{2}}(z)Q_{\frac{d}{2}-1}(z)Q_{\frac{d}{2}+1}^{\frac{d}{2}}(z)-\frac{d}{2}Q_{\frac{d}{2}+1}^{\frac{d}{2}-1}(z)Q_{\frac{d}{2}}(z)Q_{\frac{d}{2}}^{\frac{d}{2}+1}(z)} \nonumber \\&=\frac{zQ_{\frac{d}{2}+1}^{\frac{d}{2}+1}(z)}{Q_{\frac{d}{2}}^{\frac{d}{2}}(z)\left[ \left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)Q_{\frac{d}{2}+1}(z)-\frac{d}{2}Q_{\frac{d}{2}}^{2}(z)\right] }. \end{aligned}$$

From the second equation of (2.14) we know

$$\begin{aligned} Q_{\frac{d}{2}+1}(z)=\frac{2e}{dT}Q_{\frac{d}{2}}(z), \end{aligned}$$


$$\begin{aligned} G'(y)=\frac{z\left( \frac{2e}{dT}\right) ^{\frac{d}{2}}}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}. \end{aligned}$$

Note that

$$\begin{aligned} z=G\left( \theta _0 \left( \frac{d}{4\pi e}\right) ^{\frac{d}{2}} \rho \right) , \quad T=\frac{\theta _0^{\frac{2}{d}}}{2\pi }\left( \frac{\rho }{Q_{\frac{d}{2}}(z)}\right) ^{\frac{2}{d}}, \end{aligned}$$

so we have

$$\begin{aligned} \partial _t z&=G'\left( \theta _0 \left( \frac{d}{4\pi e}\right) ^{\frac{d}{2}} \rho \right) \theta _0\left( \frac{d}{4\pi }\right) ^{\frac{d}{2}}\left( \frac{1}{e^{\frac{d}{2}}}\partial _t\rho -\frac{d}{2}\frac{\rho }{e^{\frac{d}{2}+1}}\partial _te\right) \nonumber \\&=\frac{zQ_{\frac{d}{2}}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}\left( \frac{1}{\rho }\partial _t\rho -\frac{d}{2e}\partial _te\right) , \end{aligned}$$


$$\begin{aligned} \partial _tT&= \frac{\theta _0^{\frac{2}{d}}}{\pi d}\left( \frac{\rho ^{\frac{2}{d}-1}}{Q_{\frac{d}{2}}^\frac{2}{d}(z)}\partial _t\rho -\frac{\rho ^{\frac{2}{d}}Q_{\frac{d}{2}}'(z)}{Q_{\frac{d}{2}}^{\frac{2}{d}+1}(z)}\partial _tz\right) =\frac{\theta _0^{\frac{2}{d}}}{\pi d}\left( \frac{\rho ^{\frac{2}{d}-1}}{Q_{\frac{d}{2}}^\frac{2}{d}(z)}\partial _t\rho -\frac{\rho ^{\frac{2}{d}}Q_{\frac{d}{2}-1}(z)}{zQ_{\frac{d}{2}}^{\frac{2}{d}+1}(z)}\partial _tz\right) \nonumber \\&= \frac{2T}{d}\frac{1}{\rho }\rho _t -\frac{2T}{d}\frac{Q_{\frac{d}{2}-1}(z)}{Q_{\frac{d}{2}}(z)}\frac{1}{z}\partial _tz=\frac{2T}{d}\frac{1}{\rho }\rho _t \nonumber \\&-\frac{2T}{d}\frac{Q_{\frac{d}{2}-1}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}\left( \frac{1}{\rho }\partial _t\rho -\frac{d}{2e}\partial _te\right) . \end{aligned}$$


$$\begin{aligned}&\frac{1}{z}\partial _tz+\frac{(v-u)^2}{2T^2}\partial _tT=\frac{Q_{\frac{d}{2}}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}\left( \frac{1}{\rho }\partial _t\rho -\frac{d}{2e}e_t\right) \nonumber \\&+\frac{(v-u)^2}{dT}\frac{1}{\rho }\partial _t\rho -\frac{(v-u)^2}{dT}\frac{Q_{\frac{d}{2}-1}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}\left( \frac{1}{\rho }\partial _t\rho -\frac{d}{2e}\partial _te\right) \nonumber \\&=\left[ \frac{Q_{\frac{d}{2}}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)}+ \frac{(v-u)^2}{dT}\left( 1-\frac{Q_{\frac{d}{2}-1}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)} \right) \right] \frac{1}{\rho }\partial _t\rho \nonumber \\&+\left[ \frac{(v-u)^2}{2eT}\frac{Q_{\frac{d}{2}-1}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)} -\frac{d}{2e}\frac{Q_{\frac{d}{2}}(z)}{\left( \frac{d}{2}+1\right) Q_{\frac{d}{2}-1}(z)-\frac{d^2T}{4e}Q_{\frac{d}{2}}(z)} \right] \partial _te. \end{aligned}$$

Then if we define \(M(z)\) and \(N(z)\) as in (3.12), (3.8) follows readily from the above equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Li, Q. & Pareschi, L. Asymptotic-Preserving Exponential Methods for the Quantum Boltzmann Equation with High-Order Accuracy. J Sci Comput 62, 555–574 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification