Advertisement

Journal of Scientific Computing

, Volume 62, Issue 2, pp 371–398 | Cite as

Asymptotic Preserving Schemes on Distorted Meshes for Friedrichs Systems with Stiff Relaxation: Application to Angular Models in Linear Transport

  • Christophe Buet
  • Bruno Després
  • Emmanuel FranckEmail author
Article

Abstract

In this paper we propose an asymptotic preserving scheme for a family of Friedrichs systems on unstructured meshes based on a decomposition between the hyperbolic heat equation and a linear hyperbolic which not involved in the diffusive regime. For the hyperbolic heat equation we use asymptotic preserving schemes recently designed in [7]–[20]. To discretize the second part we use classical Rusanov or upwind schemes. To finish we apply this method for the discretization of the \(P_N\) and \(S_N\) models which are widely used in transport codes.

Keywords

Asymptotic preserving scheme Finite volumes scheme Diffusion limit Friedrichs systems Unstructured meshes Micro-macro decomposition 

References

  1. 1.
    Aavatsmark, I., Eigestad, G.: Numerical convergence of the MPFA O-method and U-method for general quadrilateral grids. Int J. Numer. Math. Fluids 51, 939–961 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berthon, C., Charrier, P., Turpault, R.: An HLLC scheme to solve the \(M^1\) model of radiative transfer in two dimensions. J. Sci. Comput. 31(3), 347–389 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berthon, C., Dubois, J., Dubroca, B., Nguyen-Bui, T.-H., Turpault, R.: A free streaming contact preserving scheme for the \(M_1\) model. Adv. Appl. Math. Mech. 3, 259–285 (2010)MathSciNetGoogle Scholar
  4. 4.
    Berthon, C., LeFloch, P., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. 82, 831–860 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Berthon, C., Turpault, R.: Asymptotic preserving HLL schemes. Numer. Methods Partial Differ. Equ. 27(6), 1396–1422 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Buet, C., Cordier, S., Lucquin-Desreux, B., Mancini, S.: Diffusion limit of the lorentz model: asymptotic preserving schemes. ESAIM: M2AN 36(4), 631–655 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Buet, C., Desprès, B., Franck, E.: Design of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes. Numer. Math. 122(2), 227–278 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Buet, C., Després, B., Franck, E.: An asymptotic preserving scheme with the maximum principle for the \(M_1\) model on distorded meshes. C. R. Math. 350, 633–638 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Buet, C., Després, B., Franck, E.: Asymptotic preserving finite volumes discretization for non-linear moment model on unstructured meshes. Finite Volumes for Complex Applications VI Problems and Perspectives, pp. 467–474. Springer, New York (2011)Google Scholar
  10. 10.
    Breil, J., Maire, P.-H.: A cell-centered diffusion scheme on two-dimensional unstructured meshes. JCP 224, 785–823 (2007)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Brunner, T.: Riemann solvers for time-dependant transport based on the maximum entropy and spherical harmonics closures. Ph.D thesis, The University of Michigan, (2000)Google Scholar
  12. 12.
    Brunner, T.: Form of approximate radiation transport Sandia report (2002)Google Scholar
  13. 13.
    Brunner, T., Holloway, J.P.: Two-dimensional time dependent Riemann solvers for neutron transport. JCP 210, 386–399 (2005)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Carré, G., Del Pino, S., Desprès, B., Labourasse, E.: A cell-centered lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. JCP 228(14), 5160–5180 (2009)zbMATHGoogle Scholar
  15. 15.
    Crouseilles, N., Lemou, M.: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic Relat. Model. 4(2), 441–477 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Crouseilles, N., Roger, M.: A dynamic multi-scale model for transient radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 166, 110–121 (2013)Google Scholar
  17. 17.
    Dautray, R., Watteau, J.P. (ed.): Fusion thermonucléaire inertielle par laser. Eyrolles, Paris (1994)Google Scholar
  18. 18.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society (2010)Google Scholar
  19. 19.
    Eymard, R., Gallouet, T., Herbin, R.: The finite volume method. In: Ciarlet, Ph., Lions, J.L. (eds.) Handbook for Numerical Analysis, pp 715–1022. North Holland (2000)Google Scholar
  20. 20.
    Franck, E., Hoch, P., Samba, G., Navarro, P.: An asymptotic preserving scheme for \(P_1\) model using classical diffusion schemes on unstructured polygonal meshes. ESAIM Proc. 32, 56–75 (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Acad. Sci. Paris Ser. I 334, 337–342 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gosse, L.: Transient radiative transfer in the grey case: well-balanced and asymptotic-preserving schemes built on cases’s elementary solutions. J. Quant. Spectrosc. Radiat. Transf. 112, 1995–2012 (2011)CrossRefGoogle Scholar
  23. 23.
    Greenberg, J., Leroux, A.Y.: A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)Google Scholar
  24. 24.
    Hauck, C.D., McClarren, R.G.: Positive \(P_n\) closures Siam. J. Sci. Comput. 32(5), 2603–2626 (2010)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Hauck, C.D., Lowrie, R.B., McClarren, R.G.: Methods for diffusive relaxation in \(P_n\) equations. In: Puppo, G., Russo, G. (eds.) Numerical Methods for Relaxation Systems and Balance Equations. Quaderni di Matematica International Series. Italy (2010)Google Scholar
  26. 26.
    Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp. 21, 441–454 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture Notes for Summer School on “Methods and Models of Kinetic Theory” (M and MKT), Porto Ercole. Grosseto. Italy (2010)Google Scholar
  28. 28.
    Jin, S., Levermore, D.: Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. JCP 126, 449–467 (1996)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Jin, S., Levermore, D.: The discrete-ordinate method in diffusive regime. Trans. Theory Stat. Phys. 20(5), 413–439 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Kluth, G., Després, B.: Discretization of hyperelasticity on unstructured meshes with a cell-centered Lagrangian scheme. J. Comput. Phys. 229, 9092–9118 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations inthe diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Schafer, M., Frank, M., Levermore, C.D.: Diffusive corrections to \(P_n\) approximations. Multiscale Model. Simul. 9, 1–28 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christophe Buet
    • 1
  • Bruno Després
    • 2
  • Emmanuel Franck
    • 3
    Email author
  1. 1.CEA, DAM, DIFArpajon CedexFrance
  2. 2.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie CurieParis Cedex 05France
  3. 3.Max Planck Institute for Plasma PhysicsGarchingGermany

Personalised recommendations