Skip to main content
Log in

A Nash–Moser Framework for Finding Periodic Solutions of the Compressible Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We report on recent progress the authors have made in a long term program to prove the existence of time-periodic shock-free solutions of the compressible Euler equations. We briefly recall our previous results, describe our recent change of direction, and discuss the estimates that must be obtained to get the Nash–Moser method to converge. Assuming these estimates, we present a convergence theorem for the Nash–Moser method. Our approach reduces the problem to that of obtaining small divisor estimates for finite dimensional projections of linearized operators. These operators can be described in detail, and in principle, this reduces the proof of periodic solutions to the calculation of the smallest singular value of an \(N\times N\) matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressan, A.: The unique limit of the Glimm scheme. Arch. Ration. Mech. Anal. 130, 205–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Liu, T.P., Yang, T.: \({L}_1\) stability estimates for \(n\times n\) conservation laws. Arch. Ration. Mech. Anal. 149, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  4. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Glimm, J., Lax, P.D.: Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs Am. Math. Soc. 101 (1970)

  6. John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure Appl. Math. 27, 377–405 (1974)

    Article  MATH  Google Scholar 

  7. Liu, T.-P.: Decay to \(N\)-waves of solutions of general systems of nonlinear hyperbolic conservation laws. Commun. Pure Appl. Math. 30, 585–610 (1977)

    Article  MATH  Google Scholar 

  8. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, no. 53. Springer, Berlin (1984)

    Book  Google Scholar 

  9. Moser, J.: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. 47, 1824–1831 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Riemann, B.: The propagation of planar air waves of finite amplitude, classic papers in shock compression science. In: Johnson J.N., Cheret R. (eds.) Springer, Berlin (1998)

  11. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26, 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Temple, B., Young, R.: The large time stability of sound waves. Commun. Math. Phys. 179, 417–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Temple, B., Young, R.: A paradigm for time-periodic sound wave propagation in the compressible Euler equations. Methods Appl. Anal. 16(3), 341–364 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Temple, B., Young, R.: A Liapunov–Schmidt reduction for time-periodic solutions of the compressible Euler equations. Methods Appl. Anal. 17(3), 225–262 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Temple, B., Young, R.: Time-periodic linearized solutions of the compressible Euler equations and a problem of small divisors. SIAM J. Math. Anal. 43(1), 1–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Young, R.: Sup-norm stability for Glimm’s scheme. Commun. Pure Appl. Math. 46, 903–948 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Temple supported in part by NSF Applied Mathematics Grant Number DMS-040-6096. Young supported in part by NSF Applied Mathematics Grant Number DMS-010-4485

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temple, B., Young, R. A Nash–Moser Framework for Finding Periodic Solutions of the Compressible Euler Equations. J Sci Comput 64, 761–772 (2015). https://doi.org/10.1007/s10915-014-9851-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9851-z

Keywords

Navigation