Journal of Scientific Computing

, Volume 59, Issue 2, pp 334–370 | Cite as

A Discontinuous Galerkin Coupled Wave Propagation/Circulation Model

  • Jessica Meixner
  • J. Casey Dietrich
  • Clint Dawson
  • Marcel Zijlema
  • Leo H. Holthuijsen


On large geographic scales, ocean waves are represented in a spectral sense via the action balance equation, which propagates action density through both geographic and spectral space. In this paper, a new computational spectral wave model is developed by using discontinuous Galerkin (DG) methods in both geographic and spectral space. DG methods allow for the use of unstructured geographic meshes and higher-order approximations for action propagation in both geographic and spectral space, which we show leads to increased accuracy. This DG spectral wave propagation model is verified and validated through comparisons to manufactured and analytic solutions as well as to the Simulating WAves Nearshore (SWAN) model. Coupled wave/circulation models are needed for many applications including for the interaction between waves and currents during daily wind and tide driven flows. We loosely couple the new DG spectral wave model to the DG Shallow Water Equation Model (DG-SWEM), an existing DG circulation model. In addition to formulating the DG method for the coupled wave/circulation model, we derive an a priori error estimate. Preliminary numerical results of the DG coupled wave/circulation model are presented with comparisons to DG-SWEM coupled tightly to SWAN.


Discontinuous Galerkin methods Shallow water equations Action balance equation Coupled model A priori error estimate 


  1. 1.
    Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions: I. Model description and validation. J. Geophys. Res. 104(C4), 7649–7666 (1999)CrossRefGoogle Scholar
  2. 2.
    Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Texts in Applied Mathematics. Springer, Berlin (2007)Google Scholar
  3. 3.
    Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3), 205–227 (1999)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011)CrossRefGoogle Scholar
  5. 5.
    Dawson, C., Proft, J.: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput. Methods Appl. Mech. Eng. 193(3), 289–318 (2004)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23), 2565–2580 (2004)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich Jr, R.A., Zijlema, M., Holthuijsen, L.H., Smith, J.M., Westerink, L.G., Westerink, H.J.: Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge. J. Sci. Comput. 52, 468–497 (2012)MATHCrossRefGoogle Scholar
  8. 8.
    Dietrich, J.C., Trahan, C.J., Howard, M.T., Fleming, J.G., Weaver, R.J., Tanaka, S., Yu, L., Luettich Jr, R.A., Dawson, C.N., Westerink, J.J., Wells, G., Lu, A., Vega, K., Kubach, A., Dresback, K.M., Kolar, R.L., Kaiser, C., Twilley, R.R.: Surface trajectories of oil transport along the northern coastline of the Gulf of Mexico. Cont. Shelf Res. 41, 17–47 (2012)CrossRefGoogle Scholar
  9. 9.
    Dietrich, J.C., Zijlema, M., Allier, P.E., Holthuijsen, L.H., Booij, N., Meixner, J.D., Proft, J.K., Dawson, C.N., Bender, C.J., Naimaster, A., Smith, J.M., Westerink. J.J.: Limiters for spectral propagation velocities in SWAN. Ocean Model (2012)Google Scholar
  10. 10.
    Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., Luettich Jr, R.A., Jensen, R.E., Smith, J.M., Stelling, G., Stone, G.: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 58(1), 45–65 (2011)CrossRefGoogle Scholar
  11. 11.
    Ewing, R., Wheeler, M.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17(3), 351–365 (1980)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hedges, T.S.: Combinations of waves and currents: an introduction. In. Proc. Inst. Civ. Eng. 82, 567–585 (1987)CrossRefGoogle Scholar
  13. 13.
    Holthuijsen, L.H.: Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge (2007)Google Scholar
  14. 14.
    Hsu, T.W., Ou, S.H., Liau, J.M.: Hindcasting nearshore wind waves using a FEM code for SWAN. Coast. Eng. 52(2), 177–195 (2005)CrossRefGoogle Scholar
  15. 15.
    Jonsson, I.G.: Wave current interactions. Sea Ocean Eng. Sci. Ser. 9, 65–70 (1993)Google Scholar
  16. 16.
    Kubatko, E.J., Westerink, J.J., Dawson, C.: \(hp\) Discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1), 437–451 (2006)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kuik, A.J., van Vledder, G.P., Holthuijsen, L.H.: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr. 18(7), 1020–1034 (1988)Google Scholar
  18. 18.
    Lasaint, P., Raviart, P.A.: Mathematical Aspects Finite Elments in Partial Differential Equations, Chapter. On a Finite Element Method for Solving the Neutron Transport Equation. Academic Press, New York (1974)Google Scholar
  19. 19.
    Longuet-Higgins, M.S., Stewart, R.W.: Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Ocean. Abst. 11(4), 529–562 (1964)CrossRefGoogle Scholar
  20. 20.
    Luettich, R.A., Jr., Westerink, J.J., Scheffner, N.W.: ADCIRC: An Advanced Three-dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical Report DTIC Document (1992)Google Scholar
  21. 21.
    Mei, C.C.: The Applied Dynamics of Ocean Surface Waves. Wiely, New York (1989)MATHGoogle Scholar
  22. 22.
    Phillips, O.M.: The Dynamics of the Upper Ocean. Cambridge University Press, Cambridge (1977)Google Scholar
  23. 23.
    Qi, J., Chen, C., Beardsley, R.C., Perrie, W., Cowles, G.W., Lai, Z.: An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model. 28(1–3), 153–166 (2009)CrossRefGoogle Scholar
  24. 24.
    Ris, R., Holthuijsen, L.H., Smith, J.M., Booij, N., van Dongeren, A.: The ONR test bed for coastal and oceanic wave models. In: Smith, J. (eds.) Proceedings 28th International Conference Coastal Engineering, pp. 380–392. ASCE, World Scientific Publishing (2003)Google Scholar
  25. 25.
    Rogers, W.E., Kaihatu, J.M., Hsu, L., Jensen, R.E., Dykes, J.D., Holland, K.T.: Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coast. Eng. 54(1), 1–15 (2007)CrossRefGoogle Scholar
  26. 26.
    Yildirim, B., Karniadakis, G.E.: A hybrid spectral/DG method for solving the phase-averaged ocean wave equation: algorithm and validation. J. Comput. Phys. 231(14), 4921–4953 (2012)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coast. Eng. 57(3), 267–277 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jessica Meixner
    • 1
  • J. Casey Dietrich
    • 1
  • Clint Dawson
    • 1
  • Marcel Zijlema
    • 2
  • Leo H. Holthuijsen
    • 2
  1. 1.Institute for Computational Engineering and SciencesAustinUSA
  2. 2.Faculty of Civil Engineering and GeosciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations