Skip to main content

Folding-Free Global Conformal Mapping for Genus-0 Surfaces by Harmonic Energy Minimization

Abstract

Surface conformal maps between genus-0 surfaces play important roles in applied mathematics and engineering, with applications in medical image analysis and computer graphics. Previous work (Gu and Yau in Commun Inf Syst 2(2):121–146, 2002) introduces a variational approach, where global conformal parameterization of genus-0 surfaces was addressed through minimizing the harmonic energy, with two weaknesses: its gradient descent iteration is slow, and its solutions contain undesired parameterization foldings when the underlying surface has long sharp features. In this paper, we propose an algorithm that significantly accelerates the harmonic energy minimization and a method that iteratively removes foldings by taking advantages of the weighted Laplace–Beltrami eigen-projection. Experimental results show that the proposed approaches compute genus-0 surface harmonic maps much faster than the existing algorithm in Gu and Yau (Commun Inf Syst 2(2):121–146, 2002) and the new results contain no foldings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. As our search path is a curve rather than a straight line.

References

  1. Gu, X., Yau, S.: Computing conformal structures of surfaces. Commun. Inf. Syst. 2(2), 121–146 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Gu, X., Wang, Y., Chan, T.F., Thompson, P., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)

    Article  Google Scholar 

  3. Lui, L.M., Wang, Y., Thompson, P.M., Chan, T.F.: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57, 847–858 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lui, L.M., Gu, X., Chan, T.F., Yau, S.-T.: Variational method on riemann surfaces using conformal parameterization and its applications to image processing. Methods Appl. Anal. 15(4), 513–538 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. Proceeding of ACM SIGGRAPH (2002)

  6. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Proceeding of ACM SIGGRAPH (1995)

  7. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, vol. 2. International Press, Cambridge (1994)

  8. Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. Proceeding of ACM SIGGRAPH (2002)

  9. Kanai, T., Suzuki, H., Kimura, F.: Three-dimensional geometric metamorphosis based on harmonic maps. Vis. Comput. 14(4), 166–176 (1998)

    Article  Google Scholar 

  10. Hurdal, M.K., Stephenson, K., Bowers, P.L., Sumners, D.W.L., Rottenberg, D.A.: Coordinate systems for conformal cerebellar flat maps. NeuroImage 11, S467 (2000)

    Article  Google Scholar 

  11. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Graph. 6(2), 181–189 (2000)

    Article  Google Scholar 

  12. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2008, vol. 27(3) (2008)

  13. Gu X., Yau S.T.: Global conformal surface parameterization. Symposium on Geometry Processing, pp. 127–137 (2003)

  14. Jin M., Wang Y., Yau S.T., Gu X.: Optimal global conformal surface parameterization. IEEE Visualization, Austin, TX, pp. 267–274 (2004)

  15. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  16. Yang, Y., Kim, J., Luo, F., Hu, S., Gu, X.: Optimal surface parameterization using inverse curvature map. IEEE Trans. Vis. Comput. Graph. 14(5), 1054–1066 (2008)

    Article  Google Scholar 

  17. Schoen, R., Yau, S.-T.: Lectures on Harmonic Maps. International Press, Cambridge (1997)

  18. Wen Z., Yin W.: A feasible method for optimization with orthogonality constraints. Math. Program. (2013, in press)

  19. Lui, L.M., Thiruvenkadam, S., Wang, Y., Thompson, P.M., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imaging Sci. 3(1), 52–78 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jost, J.: Riemannian Geometry and Geometric Analysis, 3rd edn. Springer, Berlin (2001)

    Google Scholar 

  21. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)

    MATH  Google Scholar 

  22. Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Communications and Control Engineering Series. Springer-Verlag London Ltd., London (1994). With a foreword by R. Brockett

  23. Udrişte, Constantin: Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1994)

    Book  Google Scholar 

  24. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)

    Chapter  Google Scholar 

  27. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential geometry operators in nd. In: Proceedings of VisMath’02, Berlin, Germany (2002)

  28. Xu, G.: Convergent discrete Laplace–Beltrami operator over triangular surfaces. Proceedings of Geometric Modelling and Processing, pp. 195–204 (2004)

  29. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., London (1984)

  30. Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. Proceedings of Eurographics Workshop on Shape Retrieval, Crete, April (2008)

  31. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as Shape-DNA of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)

    Article  Google Scholar 

  32. Shi, Y., Lai, R., Krishna, S., Sicotte, N., Dinov, I., Toga, A.W.: Anisotropic Laplace–Beltrami eigenmaps: bridging reeb graphs and skeletons. In: Proceedings of MMBIA (2008)

  33. Lai, R., Shi, Y., Scheibel, K., Fears, S., Woods, R., Toga, A.W., Chan, T.F.: Metric-induced optimal embedding for intrinsic 3D shape analysis. CVPR (2010)

  34. Shi, Y., Lai, R., Gill, R., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace–Beltrami embedding space. MICCAI (2011)

Download references

Acknowledgments

Rongjie Lai’s work is supported by Zumberge Individual Award from USC’s James H. Zumberge Faculty Research and Innovation Fund. Zaiwen Wen’s work is supported in part by NSFC Grant 11101274 and Research Fund (20110073120069) for the Doctoral Program of Higher Education of China. Wotao Yin’s work is supported in part by NSF Grant DMS-0748839 and ONR Grant N00014-08-1-1101. Xianfeng Gu’s work is is supported in part of NSF Nets 1016286, NSF IIS 0916286, NSF CCF 1081424 and ONR N000140910228. Lok Ming Lui’s work is supported in part of the CUHK Direct Grant (Project ID: 2060413) and HKRGC GRF (Project ID: 2130271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjie Lai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lai, R., Wen, Z., Yin, W. et al. Folding-Free Global Conformal Mapping for Genus-0 Surfaces by Harmonic Energy Minimization. J Sci Comput 58, 705–725 (2014). https://doi.org/10.1007/s10915-013-9752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9752-6

Keywords

  • Harmonic energy minimization
  • Conformal map
  • Optimization with orthogonality constraints
  • Weighted Laplace–Beltrami eigenfunctions