Gu, X., Yau, S.: Computing conformal structures of surfaces. Commun. Inf. Syst. 2(2), 121–146 (2002)
MATH
MathSciNet
Google Scholar
Gu, X., Wang, Y., Chan, T.F., Thompson, P., Yau, S.T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23, 949–958 (2004)
Article
Google Scholar
Lui, L.M., Wang, Y., Thompson, P.M., Chan, T.F.: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57, 847–858 (2007)
Article
MATH
MathSciNet
Google Scholar
Lui, L.M., Gu, X., Chan, T.F., Yau, S.-T.: Variational method on riemann surfaces using conformal parameterization and its applications to image processing. Methods Appl. Anal. 15(4), 513–538 (2008)
MATH
MathSciNet
Google Scholar
Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. Proceeding of ACM SIGGRAPH (2002)
Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. Proceeding of ACM SIGGRAPH (1995)
Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, vol. 2. International Press, Cambridge (1994)
Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. Proceeding of ACM SIGGRAPH (2002)
Kanai, T., Suzuki, H., Kimura, F.: Three-dimensional geometric metamorphosis based on harmonic maps. Vis. Comput. 14(4), 166–176 (1998)
Article
Google Scholar
Hurdal, M.K., Stephenson, K., Bowers, P.L., Sumners, D.W.L., Rottenberg, D.A.: Coordinate systems for conformal cerebellar flat maps. NeuroImage 11, S467 (2000)
Article
Google Scholar
Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Graph. 6(2), 181–189 (2000)
Article
Google Scholar
Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2008, vol. 27(3) (2008)
Gu X., Yau S.T.: Global conformal surface parameterization. Symposium on Geometry Processing, pp. 127–137 (2003)
Jin M., Wang Y., Yau S.T., Gu X.: Optimal global conformal surface parameterization. IEEE Visualization, Austin, TX, pp. 267–274 (2004)
Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)
Article
Google Scholar
Yang, Y., Kim, J., Luo, F., Hu, S., Gu, X.: Optimal surface parameterization using inverse curvature map. IEEE Trans. Vis. Comput. Graph. 14(5), 1054–1066 (2008)
Article
Google Scholar
Schoen, R., Yau, S.-T.: Lectures on Harmonic Maps. International Press, Cambridge (1997)
Wen Z., Yin W.: A feasible method for optimization with orthogonality constraints. Math. Program. (2013, in press)
Lui, L.M., Thiruvenkadam, S., Wang, Y., Thompson, P.M., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imaging Sci. 3(1), 52–78 (2010)
Article
MATH
MathSciNet
Google Scholar
Jost, J.: Riemannian Geometry and Geometric Analysis, 3rd edn. Springer, Berlin (2001)
Google Scholar
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)
MATH
Google Scholar
Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Communications and Control Engineering Series. Springer-Verlag London Ltd., London (1994). With a foreword by R. Brockett
Udrişte, Constantin: Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1994)
Book
Google Scholar
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)
Article
MATH
MathSciNet
Google Scholar
Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)
Article
MATH
MathSciNet
Google Scholar
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)
Chapter
Google Scholar
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Discrete differential geometry operators in nd. In: Proceedings of VisMath’02, Berlin, Germany (2002)
Xu, G.: Convergent discrete Laplace–Beltrami operator over triangular surfaces. Proceedings of Geometric Modelling and Processing, pp. 195–204 (2004)
Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Inc., London (1984)
Ben-Chen, M., Gotsman, C.: Characterizing shape using conformal factors. Proceedings of Eurographics Workshop on Shape Retrieval, Crete, April (2008)
Reuter, M., Wolter, F.E., Peinecke, N.: Laplace–Beltrami spectra as Shape-DNA of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)
Article
Google Scholar
Shi, Y., Lai, R., Krishna, S., Sicotte, N., Dinov, I., Toga, A.W.: Anisotropic Laplace–Beltrami eigenmaps: bridging reeb graphs and skeletons. In: Proceedings of MMBIA (2008)
Lai, R., Shi, Y., Scheibel, K., Fears, S., Woods, R., Toga, A.W., Chan, T.F.: Metric-induced optimal embedding for intrinsic 3D shape analysis. CVPR (2010)
Shi, Y., Lai, R., Gill, R., Pelletier, D., Mohr, D., Sicotte, N., Toga, A.W.: Conformal metric optimization on surface (CMOS) for deformation and mapping in Laplace–Beltrami embedding space. MICCAI (2011)