Skip to main content
Log in

The Lower/Upper Bound Property of Approximate Eigenvalues by Nonconforming Finite Element Methods for Elliptic Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is a complement of the work (Hu et al. in arXiv:1112.1145v1[math.NA], 2011), where a general theory is proposed to analyze the lower bound property of discrete eigenvalues of elliptic operators by nonconforming finite element methods. One main purpose of this paper is to propose a novel approach to analyze the lower bound property of discrete eigenvalues produced by the Crouzeix–Raviart element when exact eigenfunctions are smooth. In particular, under some conditions on the triangular mesh, it is proved that the Crouzeix–Raviart element method of the Laplace operator yields eigenvalues below exact ones. Such a theoretical result explains most of numerical results in the literature and also partially answers the problem of Boffi (Acta Numerica 1–120, 2010). This approach can be applied to the Crouzeix–Raviart element of the Stokes eigenvalue problem and the Morley element of the buckling eigenvalue problem of a plate. As a second main purpose, a new identity of the error of eigenvalues is introduced to study the upper bound property of eigenvalues by nonconforming finite element methods, which is successfully used to explain why eigenvalues produced by the rotated \(Q_1\) element of second order elliptic operators (when eigenfunctions are smooth), the Adini element (when eigenfunctions are singular) and the new Zienkiewicz-type element of fourth order elliptic operators, are above exact ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA 17, 93–101 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  3. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19, 1–120 (2010)

    Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM Classics in Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  5. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  6. Hu, J., Huang, Y.Q., Lin, Q.: The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods. arXiv:1112.1145v1[math.NA] (2011)

  7. Hu, J., Huang, Y.Q., Shen, Q.: A high accuracy post-processing algorithm for the eigenvalues of elliptic operators. J. Sci. Comput. 52, 426–445 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hu, J., Huang, Y.Q., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of the elliptic operators by the nonconforming element (under review)

  9. Kikuchi, F., Liu, X.: Estimation of interpolation error constants for the \(P_0\) and \(P_1\) triangular finite elements. Comput. Methods Appl. Mech. Eng. 196, 3750–3758 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, Y.A.: Lower approximation of eigenvalue by the nonconforming finite element method. Math. Numer. Sin. 30, 195–200 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Lin, Q., Xie, H.H., Luo, F.S., Li, Y., Yang, Y.D.: Stokes eigenvalue approximations from below wirh nonconforming mixed finite element methods. Math. Pract. Theory 40, 157–168 (2010)

    MathSciNet  Google Scholar 

  12. Lin, Q., Xie, H.H., Xu, J.C.: Lower Bounds of the Discretization for Piecewise Polynomials. arXiv:1106.4395v1 [Math.NA] (22 Jun 2011)

  13. Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the poisson equation eigenvalue. Chin. J. Numer. Meth. Comput. Appl. 2, 81–91 (2005)

    Article  MathSciNet  Google Scholar 

  14. Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)

    Google Scholar 

  15. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods PDEs 8, 97–111 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shen, Q.: High-Accuracy Algorithms for the Eigenvalue Problems of the Elliptic Operators and the Vibration Frequencies of the Cavity Flow (In Chinese). PhD. Dissertation in School of Mathematical Science, Peking University (June 2012)

  18. Shi, Z.C., Wang, M.: The Finite Element Method (In Chinese). Science Press, Beijing (2010)

    Google Scholar 

  19. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  20. Wang, M., Shi, Z.C., Xu, J.C.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106, 335–347 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comp. Math. 18, 413–418 (2000)

    MATH  Google Scholar 

  22. Yang, Y.D., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using nonforming finite elements. Sci. China: Math. 53, 137–150 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s elements. Chin. J. Numer. Math. Appl. 29, 81–84 (2007)

    Google Scholar 

  25. Zienkiewicz, O.C., Cheung, Y.K.: The Finite Element Method in Structrural and Continuum Mechanics. McGraw-Hill, New York (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Additional information

The first author was supported by the NSFC Project 11271035; the second author was supported by NSFC the Key Project 11031006, IRT1179 of PCSIRT and 2010DFR00700.

Appendix

Appendix

Let \(T = T_{a,\theta ,h}\) and \({\hat{T}}=T_{1,\frac{\pi }{2},1}\). We introduce the affine transformation \(F:{\hat{T}}\rightarrow T_{a,\theta ,h}\) by

$$\begin{aligned} x:=F({\hat{x}}):=B_{a,\theta ,h}{\hat{x}}, \end{aligned}$$

where

On element \(T\), the quadratic polynomial \(\Pi _2 u-u_h\) can be expressed as

$$\begin{aligned} (\Pi _2 u-u_h)|_T=\varvec{c}^\top {\varvec{\phi }}, \end{aligned}$$

where \(\varvec{c}=(c_1\quad c_2\quad c_3\quad c_4\quad c_5\quad c_6)^\top \) and \({\varvec{\phi }}=(1\quad x\quad y\quad x^2\quad xy\quad y^2)^\top \) for some parameters \(c_i\,, i=1,\ldots , 6\). The area of \(T\) is \(S=\frac{1}{2}ah^2\sin \theta \). On one hand,

$$\begin{aligned} ||\Delta (\Pi _2 u-u_h)||_{0,T}^2=\int \limits _T(\Delta \varvec{c}^\top {\varvec{\phi }})^2dxdy =\varvec{c}^\top \bigg (\int \limits _T\Delta {\varvec{\phi }}\Delta {\varvec{\phi }}^\top dxdy\bigg )\varvec{c}=\varvec{c}^\top M_2\varvec{c}. \end{aligned}$$

where \(M_2\) is a \(6\times 6\) matrix which has only \(4\) nonzero elements, i.e., \(M_2(4,4)=M_2(6,6)=4S,M_2(4,6)=M_2(6,4)=4S\). On the other hand,

$$\begin{aligned} |T|^{-1}\bigg (\int \limits _T(\Pi _1-I)(\Pi _2u-u_h)dxdy\bigg )^2&= |T|^{-1}\bigg (\int \limits _T(\Pi _1-I)\varvec{c}^\top {\varvec{\phi }}dxdy\bigg )^2\\&= |T|^{-1}\bigg (\int \limits _T(\Pi _1\!-\!I)(c_4{\varvec{\phi }}(4)\!+\!c_5{\varvec{\phi }}(5) +c_6{\varvec{\phi }}(6))dxdy\bigg )^2\\&= \varvec{c}^\top M_3\varvec{c}, \end{aligned}$$

where \(M_3\) is also a \(6\times 6\) matrix which has \(9\) nonzero components as follows

$$\begin{aligned} M_3(4,4)&= (ah^6\sin \theta (a^2\cos ^2\theta - a\cos \theta + 1)^2)/648,\\ M_3(4,5)&= M_3(5,4)= -(a^2h^6\sin \theta (\sin \theta - a\sin (2\theta ))(a^2\cos ^2\theta - a\cos \theta + 1))/1296,\\ M_3(4,6)&= M_3(6,4)=(a^3h^6\sin ^3\theta (a^2\cos ^2\theta - a\cos \theta + 1))/648,\\ M_3(5,5)&= (a^3h^6\sin \theta (\sin \theta - a\sin (2\theta ))^2)/2592,\\ M_3(5,6)&= M_3(6,5)= -(a^4h^6\sin ^3\theta (\sin \theta - a\sin (2\theta )))/1296,\\ M_3(6,6)&= (a^5h^6\sin ^5\theta )/648. \end{aligned}$$

Finally,

$$\begin{aligned} |\Pi _2 u-u_h|^2_{1,T}&= \int \limits _T\left( \left( \frac{\partial \varvec{c}^\top {\varvec{\phi }}}{\partial x}\right) ^2 +\left( \frac{\partial \varvec{c}^\top {\varvec{\phi }}}{\partial y}\right) ^2\right) dxdy\\&= \int \limits _{\hat{T}}\frac{1}{h^2\sin ^2\theta } \left( \left( \frac{\partial \widehat{{\varvec{c}}^\top {\varvec{\phi }}}}{\partial {\hat{x}}}\right) ^2 -\frac{2\cos \theta }{a}\frac{\partial \widehat{{\varvec{c}}^\top {\varvec{\phi }}}}{\partial {\hat{x}}} \frac{\partial \widehat{{\varvec{c}}^\top {\varvec{\phi }}}}{\partial {\hat{y}}}\!+\!\frac{1}{a^2} \left( \frac{\partial \widehat{{\varvec{c}}^\top {\varvec{\phi }}}}{\partial {\hat{y}}}\right) ^2\right) |\text{ det }B_{a,\theta ,h}|d{\hat{x}}d{\hat{y}}\\&= \varvec{c}^\top M_1\varvec{c}. \end{aligned}$$

By the symbolic computation of Matlab, \(M_1\) has \(25\) nonzero elements, which read

$$\begin{aligned} M_1(2,2)&= (ah^2\sin \theta )/2,M_1(2,3)=(-ah^2\cos \theta )/2,\\ M_1(2,4)&= (2ah^3 - 2a^2h^3\cos ^3\theta - 2ah^3\cos ^2\theta + 2a^2h^3\cos \theta )/(3\sin \theta ), \\ M_1(2,5)&= -(ah^3(\cos \theta - a + 2a\cos ^2\theta ))/3, M_1(2,6)=-(a^2h^3\sin (2\theta ))/3,\\ M_1(3,2)\!&= \!(ah^2\cos \theta )/2,M_1(3,3)\!=\!(ah^2\sin \theta )/2, M_1(3,4)\!=\!(2ah^3\cos \theta (a\cos \theta \!+\! 1))/3,\\ M_1(3,5)&= (ah^3(\sin \theta + a\sin (2\theta )))/3, M_1(3,6)=(2a^2h^3\sin ^2\theta )/3,\\ M_1(4,2)&= (2ah^3 - 2a^2h^3\cos ^3\theta - 2ah^3\cos ^2\theta + 2a^2h^3\cos \theta )/(3\sin \theta ),\\ M_1(4,3)&= -(2ah^3\cos \theta (a\cos \theta + 1))/3,\\ M_1(4,4)&= (3ah^4 - 5a^2h^4\cos ^3\theta + 3a^3h^4\cos ^2\theta - 3a^3h^4\cos ^4\theta \\&\quad - 3ah^4\cos ^2\theta + 5a^2h^4\cos \theta )/(3\sin \theta )\\ M_1(4,5)&= -(ah^4(6\cos \theta - 5a + 12a^2\cos ^3\theta + 15a\cos ^2\theta - 6a^2\cos \theta ))/12,\\ M_1(4,6)&= -(a^2h^4\sin (2\theta )(6a\cos \theta + 5))/12, M_1(5,2)=(ah^3(a + \cos \theta ))/3,\\ M_1(5,3)&= (ah^3\sin \theta )/3, M_1(5,4)=(ah^4(5a + 6\cos \theta + 5a\cos ^2\theta + 6a^2\cos \theta ))/12,\\ M_1(5,5)&= (ah^4(6(\sin \theta ) a^2 + 5\sin (2\theta )a + 6\sin \theta ))/24, M_1(5,6)=(5a^2h^4\sin ^2\theta )/12\\ M_1(6,2)&= (a^2h^3\sin (2\theta ))/3, M_1(6,3)=(2a^2h^3\sin ^2\theta )/3,\\ M_1(6,4)&= (a^2h^4\sin (2\theta )(6a\cos \theta + 5))/12,\\ M_1(6,5)&= -(a^2h^4(\cos ^2\theta ) - 1)(12a\cos \theta + 5))/12, M_1(6,6)=a^3h^4\sin ^3\theta . \end{aligned}$$

Let Ker(\(M_2\)) and Ker\((M_3)\) be kernel spaces of \(M_2\) and \(M_3\), respectively. Since

$$\begin{aligned} v^TM_1v\ge 0 \text{ for } \text{ any } v\in \text{ Ker }(M_2)+\text{ Ker }(M_3), \end{aligned}$$

\(C_1\) is the smallest generalized eigenvalue of \(M_1\) with respect to \(M_2\) in the orthogonal complement space Ker(\(M_2)^\perp \), \(C_2\) is the smallest generalized eigenvalue of \(M_1\) with respect to \(M_3\) in the orthogonal complement space Ker(\(M_3)^\perp \). Since ranks of both \(M_2\) and \(M_3\) are \(1\), we only need to find nonzero vectors \(\varvec{v}_1\in \text{ Ker }(M_2)^\perp \) and \(\varvec{v}_2\in \text{ Ker }(M_3)^\perp \), which are eigenvectors corresponding to nonzero eigenvalues of \(M_2\) and \(M_3\), respectively. This leads to

$$\begin{aligned} C_1=\frac{\varvec{v}^\top _1M_1\varvec{v}_1}{\varvec{v}^\top _1M_2\varvec{v}_1}, C_2=\frac{\varvec{v}^\top _2M_1\varvec{v}_2}{\varvec{v}^\top _2M_3\varvec{v}_2}. \end{aligned}$$

The symbolic computation of Matlab produces that the numerator of \(C_1C_2\) is

$$\begin{aligned}&(-36a^6)\cos ^6\theta + (216a^7 + 108a^5)\cos ^5\theta + (252a^8 + 324a^6 - 9a^4)\cos ^4\theta \\&\qquad + (- 324a^7 - 54a^5 + 162a^3)\cos ^3\theta + (- 252a^8 - 117a^6 + 495a^4 + 171a^2)\cos ^2\theta \\&\qquad +(108a^7 - 54a^5 - 162a^3)\cos \theta + 144a^8 + 117a^6 - 54a^4 + 117a^2 + 144, \end{aligned}$$

and that the denominator of \(C_1C_2\) is

$$\begin{aligned}&(16a^8)\cos ^8\theta + (-32a^7)\cos ^7\theta + (- 32a^8 + 104a^6)\cos ^6\theta + (-152a^5)\cos ^5\theta \\&\qquad + (48a^8 - 48a^6 + 217a^4)\cos ^4\theta + (- 32a^5 - 208a^3)\cos ^3\theta \!+\! (- 32a^8 + 96a^6 + 54a^4\\&\qquad +152a^2)\cos ^2\theta \!+\! (\!-\! 32a^7 \!-\! 72a^5 \!-\! 48a^3 \!-\! 64a)\cos \theta \!+\! 16a^8 \!+\! 8a^6 + 33a^4 + 8a^2 + 16. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Huang, Y. & Shen, Q. The Lower/Upper Bound Property of Approximate Eigenvalues by Nonconforming Finite Element Methods for Elliptic Operators. J Sci Comput 58, 574–591 (2014). https://doi.org/10.1007/s10915-013-9744-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9744-6

Keywords

Navigation