Skip to main content
Log in

Approximation of Single Layer Distributions by Dirac Masses in Finite Element Computations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We are interested in the finite element solution of elliptic problems with a right-hand side of the single layer distribution type. Such problems arise when one aims at accounting for a physical hypersurface (or line, for bi-dimensional problem), but also in the context of fictitious domain methods, when one aims at accounting for the presence of an inclusion in a domain (in that case the support of the distribution is the boundary of the inclusion). The most popular way to handle numerically the single layer distribution in the finite element context is to spread it out by a regularization technique. An alternative approach consists in approximating the single layer distribution by a combination of Dirac masses. As the Dirac mass in the right hand side does not make sense at the continuous level, this approach raises particular issues. The object of the present paper is to give a theoretical background to this approach. We present a rigorous numerical analysis of this approximation, and we present two examples of application of the main result of this paper. The first one is a Poisson problem with a single layer distribution as a right-hand side and the second one is another Poisson problem where the single layer distribution is the Lagrange multiplier used to enforce a Dirichlet boundary condition on the boundary of an inclusion in the domain. Theoretical analysis is supplemented by numerical experiments in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bertoluzza, S., Ismail, M., Maury, B.: Analysis of the fully discrete fat boundary method. Numerische Mathematik 118, 49–77 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bertrand, F., Tanguy, P.A., Thibault, F.: A three-dimensional fictitious domain method for incompressible fluid flow problems. Int. J. Numer. Methods Fluids 25, 719–736 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boffi, D., gastaldi, L.: A finite element approach to the immersed boundary method. Comput. Stuct. 81, 491–501 (2003)

    Article  MathSciNet  Google Scholar 

  4. Ciarlet, P.G.: The finite element method for elliptic problems, SIAM (2002)

  5. Cottet, G.-H., Maitre, E.: A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16(3), 415–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dos Santos, N., Gerbeau, J.-F., Bourgat, J.-F.: A partitioned fluid-structured algorithm for elastic thin valves with contact. Comput. Methods Appl. Mech. Eng. 197, 1750–1761 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Givelberg, E., Bunn, J.: A comprehensive three-dimensional model of the cochlea. J. Comput. Phys. 191, 377–391 (2003)

    Article  MATH  Google Scholar 

  8. Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Herrmann, M.: A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227(4), 2674–2706 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ilinca, F., Hétu, J.-F.: A finite element immersed boundary method for fluid flows around rigid objects. Int. J. Numer. Methods Fluids 65, 856–875 (2011)

    Article  MATH  Google Scholar 

  11. Kim, Y., Peskin, C.S.: 3-D Parachute simulation by the immersed boundary method. Comput. Fluids 38, 1080–1090 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maury, B.: A fat boundary method for the Poisson problem in a domain with Holes. J. Sci. Comput. 16, 319–339 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Maury, B.: Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47(2), 1126–1148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  16. Pan, T.-W.: A Lagrange multipliers/fictitious domain/collocation method for solid-liquid flows. IMA Vol. Math. its Appl. 120, 97–122 (2000)

    Article  Google Scholar 

  17. Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81, 372–405 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tan, Z., Le, D.V., Li, Z., Lim, K.M., Khoo, B.C.: An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane. J. Comput. Phys. 227, 9955–9983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tyson, R., Jordan, C.E., Hebert, J.: Modelling anguilliform swimming at intermediate Reynolds number: a review and a novel extension of immersed boundary method applications. Comput. Methods Appl. Mech. Eng. 197, 2105–2118 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fabrèges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabrèges, B., Maury, B. Approximation of Single Layer Distributions by Dirac Masses in Finite Element Computations. J Sci Comput 58, 25–40 (2014). https://doi.org/10.1007/s10915-013-9723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9723-y

Keywords

Navigation