Skip to main content
Log in

An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate efficient algorithms and a practical implementation of an explicit-type high-order timestepping method based on Krylov subspace approximations, for possible application to large-scale engineering problems in electromagnetics. We consider a semi-discrete form of the Maxwell’s equations resulting from a high-order spectral-element discontinuous Galerkin discretization in space whose solution can be expressed analytically by a large matrix exponential of dimension \(\kappa \times \kappa \). We project the matrix exponential into a small Krylov subspace by the Arnoldi process based on the modified Gram–Schmidt algorithm and perform a matrix exponential operation with a much smaller matrix of dimension \(m\times m\) (\(m\ll \kappa \)). For computing the matrix exponential, we obtain eigenvalues of the \(m\times m\) matrix using available library packages and compute an ordinary exponential function for the eigenvalues. The scheme involves mainly matrix-vector multiplications, and its convergence rate is generally \(O(\Delta t^{m-1})\) in time so that it allows taking a larger timestep size as \(m\) increases. We demonstrate CPU time reduction compared with results from the five-stage fourth-order Runge–Kutta method for a certain accuracy. We also demonstrate error behaviors for long-time simulations. Case studies are also presented, showing loss of orthogonality that can be recovered by adding a low-cost reorthogonalization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moler, C., Loan, C.V.: Nineteen dubios ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston (1996)

    MATH  Google Scholar 

  4. Saad, Y.: Analysis of some Krylov subspace approximation to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Saad, Y.: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Comput. 10(6), 1200–1232 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Novati, P.: A low cost Arnoldi method for large linear initial value problems. Int. J. Comput. Math. 81(7), 835–844 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hochbruck, M., Lubich, C.: On the Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hesthaven, J.S., Warburton, T.: Nodal hihg-order methods on unstructured grids. I: time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications, Texts in Applied Mathematics. Springer, Berlin (2008)

  12. Cockburn, B., Li, F., Shu, C.W.: Locally divergence-free discontinuous Galerkin methods. J. Comp. Phys. 194, 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rieben, R., White, D., Rodrigue, R.: High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations. IEEE Trans. Antennas Propag. 56(8), 2190–2195 (2004)

    Article  MathSciNet  Google Scholar 

  14. Nédeléc, J.C.: Mixed finite elements in R3. Numer. Math. 159(1), 315–341 (1980)

    Article  Google Scholar 

  15. Forest, E., Ruth, R.D.: Fourth-order sympletic integration. Physica D 43, 105–117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Candy, J., Rozmus, W.: A simplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 92, 230–256 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix Computations. North Oxford Academic, England (1986)

    Google Scholar 

  18. Strom, T.: On logarithmic norms. SIAM J. Numer. Anal. 12(5), 741–753 (1975)

    Article  MathSciNet  Google Scholar 

  19. Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Clifts, N.J. (1980)

  20. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge Monographs on Applied and Computational Mathematics, vol. 9. Cambridge University Press, Cambridge (2002)

  21. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics, vol. 21. Cambridge University Press, Cambridge (2007)

  22. LAPACK, Linear Algebra PACKage, http://www.netlib.org/lapack

  23. Gray, S.K., Kupka, T.: Propagation of light in metallic nanowire arrays: Finite-difference time domain studies of silver cylinders. Phys. Rev. B 68, 045415/1–045415/11 (2003)

    Article  Google Scholar 

  24. Oliva, J.M., Gray, S.K.: Theoretical study of dielectrically coated metallic nanowires. Chem. Phys. Lett. 379, 325–331 (2003)

    Article  Google Scholar 

  25. Zagorodnov, I.: TE/TM field solver for particle beam simulations without numerical Cherenkov radiation. Phys. Rev. Spec. Top. Accel. Beams 8, 042001 (2005)

    Article  Google Scholar 

  26. Gjonaj, E., Lau, T., Schnepp, S., Wolfheimer, F., Weiland, T.: Accurate modeling of charged particle beams in linear accelerators. New J. Phys. 8, 285 (2006)

    Article  Google Scholar 

  27. Min, M.S., Lee, T.W., Fischer, P.F., Gray, S.K.: Fourier spectral simulations and Gegenbauer reconstructions for electromagnetic waves in the presence of a metal nanoparticle. J. Comput. Phys. 213(2), 730–747 (2006)

    Article  MATH  Google Scholar 

  28. Min, M.S., Fischer, P.F., Montgomery, J., Gray, S.K.: Large-scale electromagnetic modeling based on high-order methods: nanoscience applications. J. Phys. Conf. Ser. 180, 012016 (2009)

    Article  Google Scholar 

  29. Min, M.S., Fischer, P.F., Chae, Y.C.: Spectral-element discontinuous Galerkin simulations for bunched beam in accelerating structures. In: Proceedings of PAC07, pp. 3432–3434 (2007)

  30. Min, M.S., Lee, T.: A spectral-element discontinuous Galerkin lattice-Boltzmann method for incompressible flows. J. Comput. Phys. 230, 245–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Taflove, A., Hagness, S.C.: Computational Electrodynamics, The Finite Difference Time Domain Method. Artech House, Norwood, MA (2000)

    MATH  Google Scholar 

  32. Wolf, D.A.: Essentials of Electromagnetics for Engineering. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  33. Carpenter, M.H., Kennedy, C.: Fourth-order 2\(N\)-storage Runge-Kutta schemes, NASA Report TM 109112, NASA Langley Research Center (1994)

  34. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, M., Fischer, P. An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics. J Sci Comput 57, 582–603 (2013). https://doi.org/10.1007/s10915-013-9718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9718-8

Keywords

Navigation