Skip to main content
Log in

Error Estimates of the Finite Element Method for Interior Transmission Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The interior transmission problem (ITP) plays an important role in the investigation of the inverse scattering problem. In this paper we propose the finite element method for solving the ITP. Based on the \(\mathbb T \)-coercivity, we derive both priori error estimate and a posteriori error estimate of the finite element approximation. Numerical experiments are also included to illustrate the accuracy of the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babuška, I., Aziz, A.: Survey lectures on mathematical foundations of the finite element method. In: Aziz, A. (ed.) The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, pp. 5–359. Academic Press, New York (1972)

  2. Babuška, I., Ihlenburg, F., Strouboulis, T., Gangaraj, S.K.: A posteriori error estimation for the finite element solutions of Helmholtz equations—part II: estimation of the pollution error. Int. J. Numer. Meth. Eng. 40, 3883–3900 (1997)

    Article  MATH  Google Scholar 

  3. Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63, 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet Jr, P.: T-coercivity for scalar interface problems between dielectrics and metamaterials. Math. Model. Numer. Anal. 46, 1363–1387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnet-Ben Dhia, A.S., Chesnel, L., Haddar, H.: On the use of T-coercivity to study the interior transmission eigenvalue problem. C. R. Math. Acad. Sci. Paris 349, 647–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnet-Ben Dhia, A.S., Ciarlet Jr, P., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234, 1912–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESIAM:M2AN 42, 925–940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cakoni, F., Colton, D.: Qualitative Methods in Inverse Scattering Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Cakoni, F., Colton, D., Haddar, H.: The interior transmission problem for regions with cavities. SIAM J. Math. Anal. 42, 145–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of the transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–826 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Wu, X.: An adaptive uniaxial perfectly matched layer method for time-harmonic scattering problems. Numer. Math. Theor. Meth. Appl. 1, 113–137 (2008)

    MATH  Google Scholar 

  14. Chesnel, L.: Interior transimission eigenvalue problem for Maxwell’s equations: the T-coercivity as an alternative approach. Inverse Probl 28, 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chesnel, L., Ciarlet Jr, P.: T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. (2012). doi:10.1007/s00211-012-0510-8

    Google Scholar 

  16. Ciarlet Jr, P.: T-coercivity: application to the discretization of Helmholtz-like problems. Comput. Math. Appl. 64, 22–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  18. Colton, D., Monk, P.: The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Q. J. Mech. Appl. Math. 41, 97–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)

    Article  MathSciNet  Google Scholar 

  20. Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cossonnière, A., Haddar, H.: The electromagnetic interior transmission problem for regions with cavities. SIAM J. Math. Anal. 43, 1698–1715 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Evans, L.C.: Partial differential equations. American Mathematical Society, Providence (1998)

  24. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47, 2872–2896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, X., Wu, H.: hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80, 1997–2024 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49, 291–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equations: analysis of the \(p\)-version. SIAM J. Numer. Anal. 49, 264–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hsiao, G.C., Liu, F., Sun, J., Xu, L.: A coupled BEM and FEM for the interior transmission problem in acoustics. J. Comput. Appl. Math. 235, 5213–5221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ihlenburg, F., Babuška, I.: Dispersion analysis and error estimation of Galerkin finite elements for the Helmholtz equation. Int. J. Numer. Meth. Eng. 38, 3745–3774 (1995)

    Article  MATH  Google Scholar 

  30. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I: the h-version of the FEM. Comput. Math. Appl. 30, 9–37 (1995)

    Google Scholar 

  31. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II: the h-p version of the FEM. SIAM J. Numer. Anal. 34, 315–358 (1997)

    Google Scholar 

  32. Ji, X., Sun, J., Turner, T: A mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Soft. 38(4) (2012), Algorithm 922

  33. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–225 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mekchay, K., Nochetto, R.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nicaise, S., Venel, J.: A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients. J. Comput. Appl. Math. 235, 4272–4282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shen, J., Wang, L.: Spectral approximation of the Helmholtz equation with high wave numbers. SIAM J. Numer. Anal. 43, 623–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Strouboulis, T., Babuška, I., Hidajat, R.: The generalized finite element method for Helmholtz equation: theory, computation and open problems. Comput. Methods Appl. Mech. Eng. 195, 4711–4731 (2006)

    Article  MATH  Google Scholar 

  42. Strouboulis, T., Babuška, I., Hidajat, R.: The generalized finite element method for Helmholtz equation. Part II: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. Comput. Methods Appl. Mech. Eng. 197, 364–380 (2008)

    Article  MATH  Google Scholar 

  43. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part I: linear version. IMA J. Numer. Anal. (2012). doi:10.1093/imanum/dri000

  45. Zhu, L., Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: hp version, arXiv: 1204.5061v1

Download references

Acknowledgments

The authors thank the helpful discussions with Jin Cheng and Shuai Lu. The work is supported by the Key Project National Science Foundation of China (91130004), the Natural Science Foundation of China (11171077) and the Ministry of Education of China and the State Administration of Foreign Experts Affairs of China under a 111 project grant (B08018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Chen, W. Error Estimates of the Finite Element Method for Interior Transmission Problems. J Sci Comput 57, 331–348 (2013). https://doi.org/10.1007/s10915-013-9708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9708-x

Keywords

Mathematics Subject Classification (2000)

Navigation