Skip to main content
Log in

Richardson Extrapolation for Linearly Degenerate Discontinuities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we investigate the use of Richardson extrapolation to estimate the convergence rates for numerical solutions to wave propagation problems involving discontinuities. For many cases, we find that the computed results do not agree with the a-priori estimate of the convergence rate. Furthermore, the estimated convergence rate is found to depend on the specific details of how Richardson extrapolation was applied; in particular the order of comparisons between three approximate solutions can have a significant impact. Modified equations are used to analyze the situation. We elucidated, for the first time, the cause of apparently unpredictable estimated convergence rates from Richardson extrapolation in the presence of discontinuities. Furthermore, we ascertain one correct structure of Richardson extrapolation that can be used to obtain predictable estimates. We demonstrate these results using a number of numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giles, M.B., üli, E.S.: Acta Numerica 11, 145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Estep, D., Larson, M., Williams, R.: Mem. Am. Math. Soc. 696, 1 (2000)

    Google Scholar 

  3. Hay, A., Visonneau, M.: Int. J. Comput. Fluid D. 20(7), 463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banks, J.W., Hittinger, J.A.F., Connors, J.M., Woodward, C.S.: Comput. Method. Appl. Mech. Engrg. 213—-216, 1 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ainsworth, M., Oden, J.T.: Comput. Method. Appl. Mech. Engrg. 142, 1 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Roy C.J. Review of discretization error estimators in scientific computing. AIAA Paper 2010–126 (2010).

  7. Niethammer, R., Kim, K., Ballmann, J.: Int. J. Impact Eng. 16, 1711 (1995)

    Article  Google Scholar 

  8. Appelö, D., Banks, J.W., Henshaw, W.D., Schwendeman, D.W.: J. Comput. Phys. 231, 6012 (2012)

    Article  MathSciNet  Google Scholar 

  9. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philidelphia. (1972)

    Google Scholar 

  10. Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Kapila, A.K.: Combust. Theory and Modelling 12(4), 769 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Banks, J.W., Aslam, T., Rider, W.J.: J. Comput. Phys. 227(14), 6985 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henshaw, W.D., Schwendeman, D.W.: J. Comput. Phys. 216(2), 744 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Banks, J.W., Henshaw, W.D., Shadid, J.N.: J. Comput. Phys. 228(15), 5349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Banks, J.W., Henshaw, W.D.: J. Comput. Phys. 231(17), 5854 (2012)

    Article  MathSciNet  Google Scholar 

  15. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  16. Lax, P., Wendroff, B.: Commun. Pur. Appl. Math. 13, 217 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. Després, B.: Numer. Math. 108, 529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Després, B.: SIAM J. Numer. Anal. 47, 3956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Leer, B.: J. Comput. Phys. 32, 101 (1979)

    Article  Google Scholar 

  20. Sweby, P.K.: SIAM J. Numer. Anal. 21, 995 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Banks.

Additional information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project at LLNL under project tracking code 10-SI-013, by DOE contracts from the ASCR Applied Math Program, and by Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks, J.W., Aslam, T.D. Richardson Extrapolation for Linearly Degenerate Discontinuities. J Sci Comput 57, 1–18 (2013). https://doi.org/10.1007/s10915-013-9693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9693-0

Keywords

Navigation