Skip to main content
Log in

Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider Runge–Kutta discontinuous Galerkin (RKDG) schemes for Vlasov–Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preserving limiter that guarantees positivity of the distribution functions. The RKDG solver for the Vlasov equation is the main focus, while the electric field is obtained through the classical representation by Green’s function for the Poisson equation. A rigorous study of recurrence of the DG methods is presented by Fourier analysis, and the impact of different polynomial spaces and the positivity-preserving limiters on the quality of the solutions is ascertained. Several benchmark test problems, such as Landau damping, the two-stream instability, and the Kinetic Electro static Electron Nonlinear wave, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Afeyan, B., Won, K., Savchenko, V., Johnston, T., Ghizzo, A., Bertrand, P.: Kinetic electrostatic electron nonlinear (KEEN) waves and their interactions driven by the ponderomotive force of crossing laser beams. In: Proceedings of IFSA 2003, p. 213, 2003

  2. Ayuso, B., Carrillo, J.A., Shu, C.-W.: Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. Kinet Relat Models 4, 955–989 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Ayuso, B., Carrillo, J.A., Shu, C.-W.: Discontinuous Galerkin methods for the multi-dimensional Vlasov–Poisson problem. Math. Models Methods Appl. Sci. 22, 1250042 (45 pages) (2012)

    Google Scholar 

  4. Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature 324, 446–449 (1986)

    Article  Google Scholar 

  5. Bernstein, I., Greene, J.M., Kruskal, M.D.: Exact nonlinear plasma oscillations. Phys. Rev. 108, 546–550 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. Institute of Physics Publishing, Bristol (1991)

    Book  Google Scholar 

  7. Boris, J., Book, D.: Solution of continuity equations by the method of flux-corrected transport. J. Comput. Phys. 20, 397–431 (1976)

    Article  MATH  Google Scholar 

  8. Cheng, Y., Gamba, I.M.: Numerical study of Vlasov-Poisson equations for infinite homogeneous stellar systems. Commun. Nonlinear Sci. Numer. Simul. 17, 2052–2061 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)

    Article  Google Scholar 

  10. Cheng, Y., Gamba, I.M., Proft, J.: Positivity-preserving discontinuous Galerkin schemes for linear Vlasov–Boltzmann transport equations. Math. Comput. 81(277), 153–190 (2010)

    MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Demeio, L., Zweifel, P.F.: Numerical simulations of perturbed Vlasov equilibria. Phys. Fluids B 2, 1252–1254 (1990)

    Article  Google Scholar 

  17. Evstatiev, E.G., Shadwick, B.A.: J. Comput. Phys. Preprint, to appear (2012).

  18. Fijalkow, E.: A numerical solution to the Vlasov equation. Comput. Phys. Commun. 116, 319–328 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Google Scholar 

  20. Fried, B.D., Conte, S.D.: The Plasma Dispersion Function. Academic Press, London (1961)

    Google Scholar 

  21. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  22. Heath, R.E.: Numerical analysis of the discontinuous Galerkin method applied to plasma physics. Ph. D. dissertation, The University of Texas at Austin (2007)

  23. Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231, 1140–1174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-Hill, New York (1981)

    Google Scholar 

  25. Johnston, T.W., Tyshetskiy, Y., Ghizzo, A., Bertrand, P.: Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves. Phys. Plasmas 16, 042105 (2009)

    Article  Google Scholar 

  26. Jung, S., Morrison, P.J., Swinney, H.L.: On the statistical mechanics of two-dimensional turbulence. J. Fluid Mech. 554, 433–456 (2006)

    Google Scholar 

  27. Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68, 202–226 (1987)

    Article  MATH  Google Scholar 

  28. Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110, 150–163 (1994)

    Google Scholar 

  29. Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43, 548–618 (1980)

    Article  MathSciNet  Google Scholar 

  30. Kruskal, M.D., Oberman, C.: On the stability of plasma in static equilibrium. Phys. Fluids 1, 275–280 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, T.D.: On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Math. 10, 69–74 (1952)

    MATH  Google Scholar 

  32. Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In Mathematical aspects of finite elements in partial differential equations. In: Proceedings of Symposium on Mathematical Research Center, University of Wisconsin, Madison, pp. 89–123. Mathematical Research Center, University of Wisconsin-Madison, Academic Press, New York (1974)

  33. Montgomery, S., Cobble, J.A., Fernndez, J.C., Focia, R.J., Johnson, R.P., Renard-LeGalloudec, N., Rose, H.A., Russell, D.A.: Recent trident single hot spot experiments: evidence for kinetic effects, and observation of Langmuir decay instability cascade. Phys. Plasmas 9, 2311–2320 (2002)

    Article  Google Scholar 

  34. Morrison, P.J.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998)

    Article  MATH  Google Scholar 

  35. Morrison, P.J.: Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum. Transp. Theory Stat. Phys. 29, 397–414 (2000)

    Article  MATH  Google Scholar 

  36. Morrison, P.J., Pfirsch, D.: Free energy expressions for Vlasov–Maxwell equilibria. Phys. Rev. 40A, 3898–3910 (1989)

    Google Scholar 

  37. Morrison, P.J., Pfirsch, D.: The free energy of Maxwell–Vlasov equilibria. Phys. Fluids 2B, 1105–1113 (1990)

    MathSciNet  Google Scholar 

  38. Morrison, P.J., Pfirsch, D.: Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Phys. Fluids 4B, 3038–3057 (1992)

    MathSciNet  Google Scholar 

  39. Moser, J.: Periodic orbits near an equilibrium and a theorem by Alan Weinstein. Commun. Pure Appl. Math. 29, 727–747 (1976)

    Article  MATH  Google Scholar 

  40. Nieuwstadt, F.T.M., Steketee, J.A.: Selected Papers of J.M. Burgers. Kluwer, Dodrecht (1995)

    Book  Google Scholar 

  41. Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Reed, W., Hill, T.: Tiangular mesh methods for the neutron transport equation. Technical report, Los Alamos National Laboratory, Los Alamos, NM (1973)

  43. Rossmanith, J., Seal, D.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230(16), 6203–6232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149(2), 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Valentini, F., O’Neil, T.M., Dubin, D.H.E.: Excitation of nonlinear electron acoustic waves. Phys. Plasmas 13, 052303 (2006)

    Article  Google Scholar 

  47. Valentini, F., Perrone, D., Califano, F., Pegoraro, F., Veltri, P., Morrison, P.J., O’Neil, T.M.: Undamped electrostatic plasma waves. Phys. Plasmas 19, 092103 (2012)

    Article  Google Scholar 

  48. Xing, Y., Zhang, X., Shu, C.-W.: Positivity preserving high order well balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

  49. Zaki, S., Gardner, L., Boyd, T.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)

    Article  MATH  Google Scholar 

  50. Zaki, S., Gardner, L., Boyd, T.: A finite element code for the simulation of one-dimensional Vlasov plasmas. II. Applications. J. Comput. Phys. 79, 200–208 (1988)

    Article  MATH  Google Scholar 

  51. Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34, 581–592 (2005)

    Article  MATH  Google Scholar 

  52. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, X., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: survey and new developments. Proc. R. Soc. A 467, 2752–2776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230, 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)

    Google Scholar 

  57. Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. 200, 2814–2827 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhou, T., Guo, Y., Shu, C.-W.: Numerical study on Landau damping. Physica D 157(4), 322–333 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

YC was supported by grant NSF DMS-1016001, IMG was supported by grants NSF DMS-0807712 and DMS-0757450, and PJM was supported by U.S. Dept. of Energy Contract # DE-FG05-80ET-53088. Also, support from the Department of Mathematics at Michigan State University and the Institute of Computational Engineering and Sciences at the University of Texas Austin are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingda Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Gamba, I.M. & Morrison, P.J. Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J Sci Comput 56, 319–349 (2013). https://doi.org/10.1007/s10915-012-9680-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9680-x

Keywords

Navigation